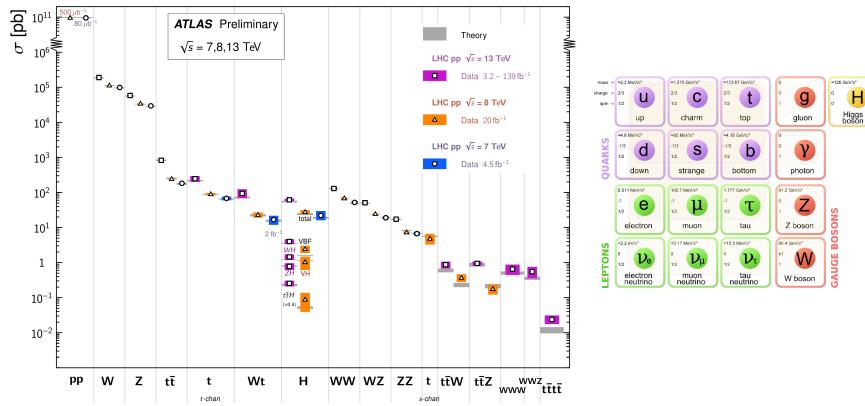
SUSY AND EXOTICS SEARCHES @ LHC

Land the second second

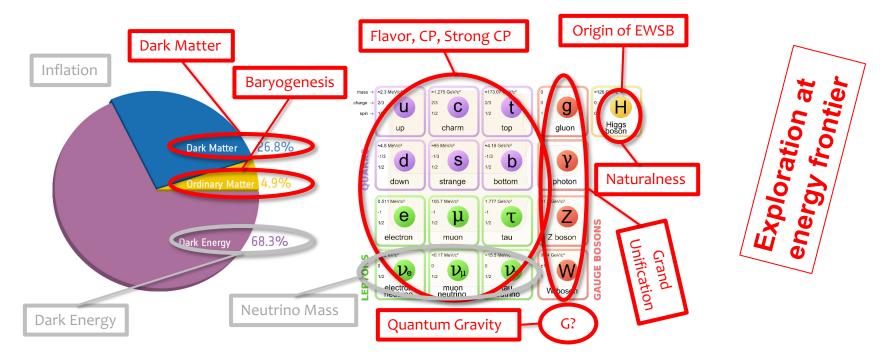
Xuai Zhuang (庄脀爱) xuai.zhuang@cern.ch IHEP, Beijing, China Aug.9-17, Beijing, pre-SUSY2021

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

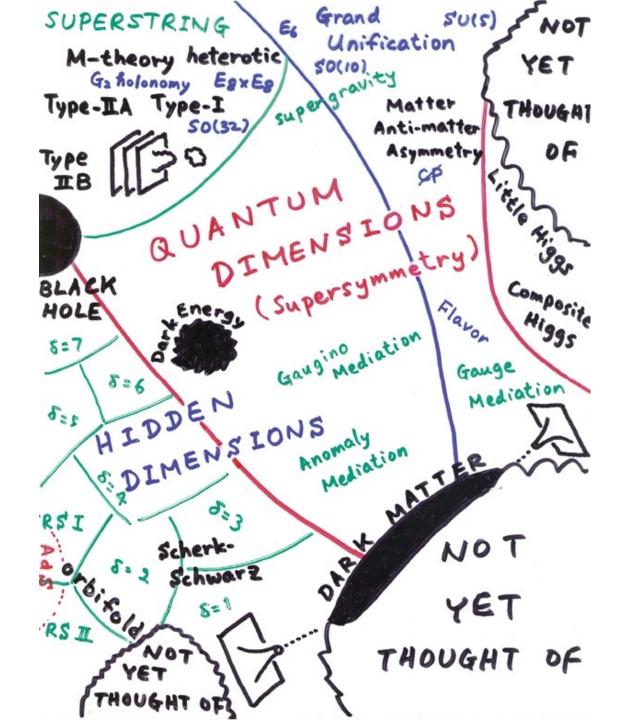

Visible matter

Standard Model

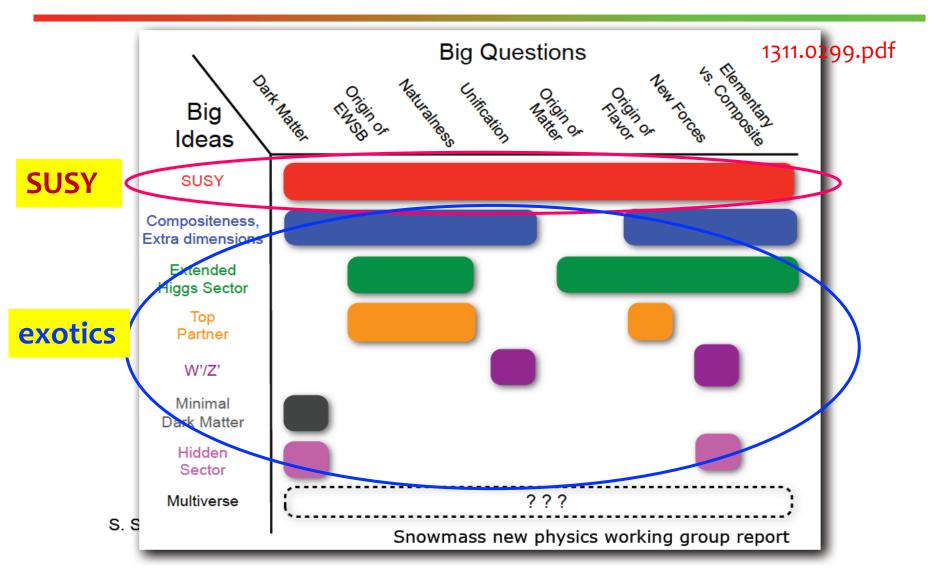
Dark Matter & Dark Energy


Introduction

SM fits the experimental data very well in EW scale. Discovery of Higgs boson makes SM self-consistent.


Standard Model Total Production Cross Section Measurements Status: March 2021

Many big questions not answered by SM !


Picture modified from Jonathan Feng at 2017 ICFA Seminar

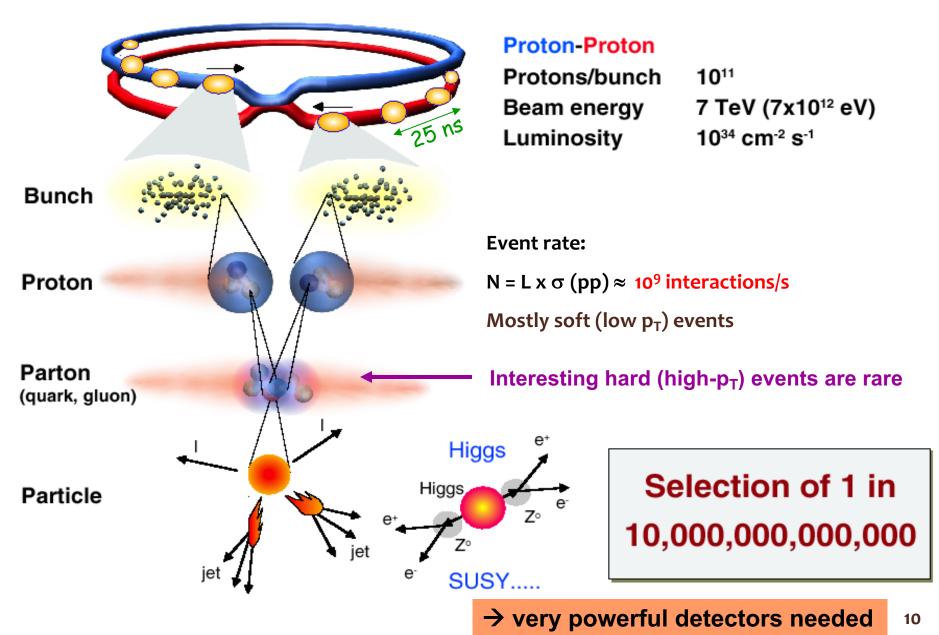
Need a more fundamental theory in which SM is only a low-energy approximation > New Physics.

New Physics beyond the SM

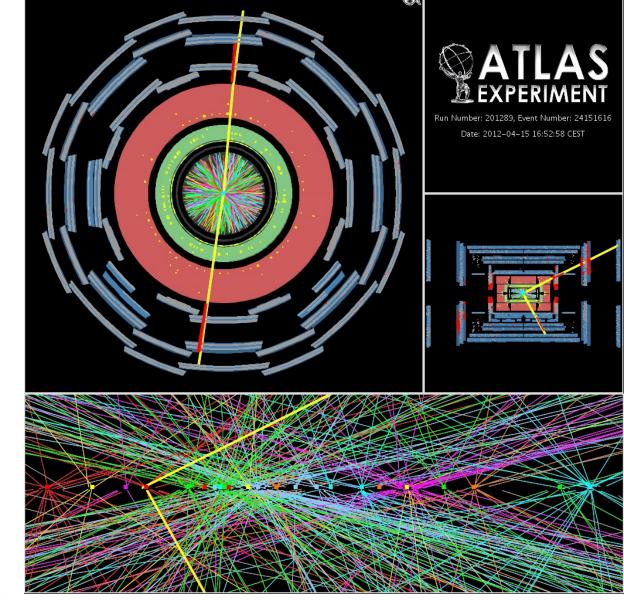
Outline

- LHC & ATLAS/CMS detectors
- BSM Searches @ LHC
- Prospects @ Future proton colliders
- Summary

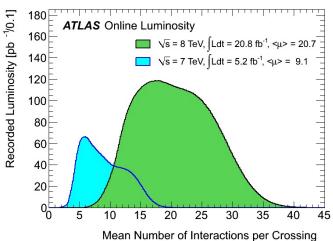
LHC & ATLAS/CMS detectors


Heb

- 世界最大,能量最高的加速器,进行最前沿的粒子物理研究
- 质心系能量14TeV (Tevatron的7倍),可以发现5TeV以下的较重的新粒子。


• 积分亮度10³⁴ cm⁻² s⁻¹ (Tevatron 的100倍),可以发现微小衰变截面的稀有事例

Collisions at LHC



Excellent LHC performance is a (nice) challenge for the experiment:

- Trigger
- Pile-up
- Maintain accuracy of the the measurements in this environment

Inner Detector for a Z \rightarrow µµ event with 25 primary vertices

ATLAS and CMS detector @ LHC ATLAS and CMS: two multi-purpose detectors @LHC

A Toroidal LHC ApparatuS

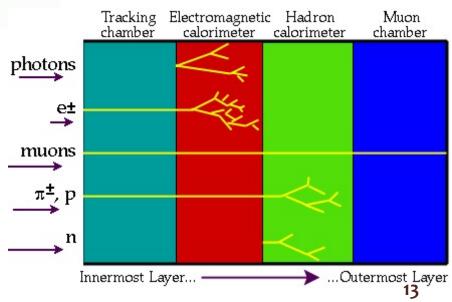
- 42m×22m, 7000 ton
- Solenoid + Toroidal magnet (2T)

C.V.

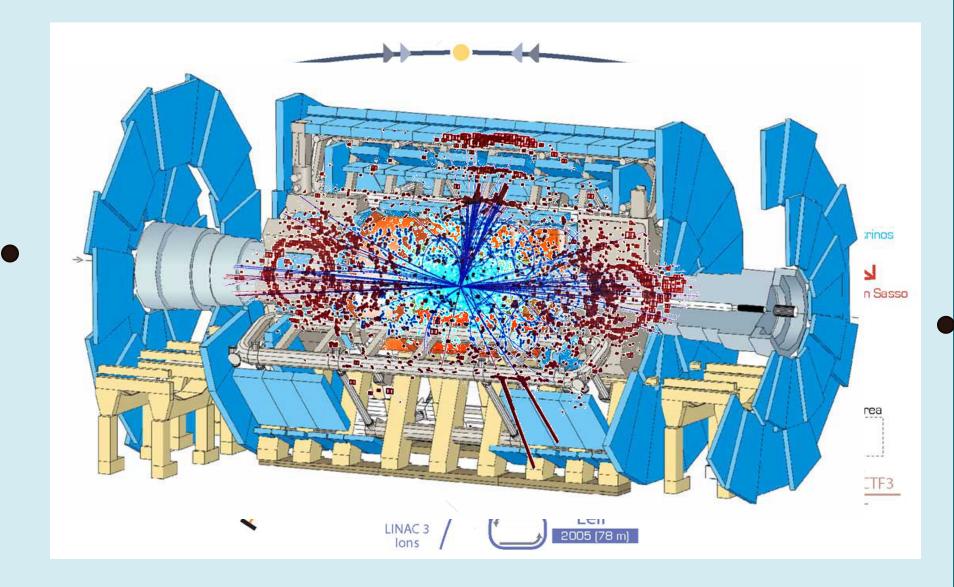
- Fine granularity liquid Ar/Tile calorimeters

Large Hadron Collider (LHC):

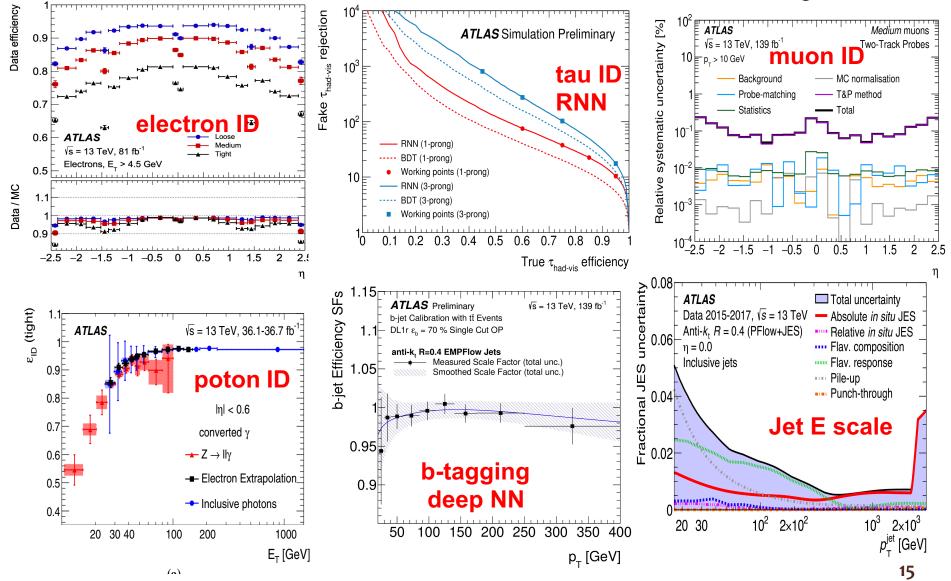
Proton-Proton synchrotron
 World's highest and largest collider


Compact Muon Spectrometer

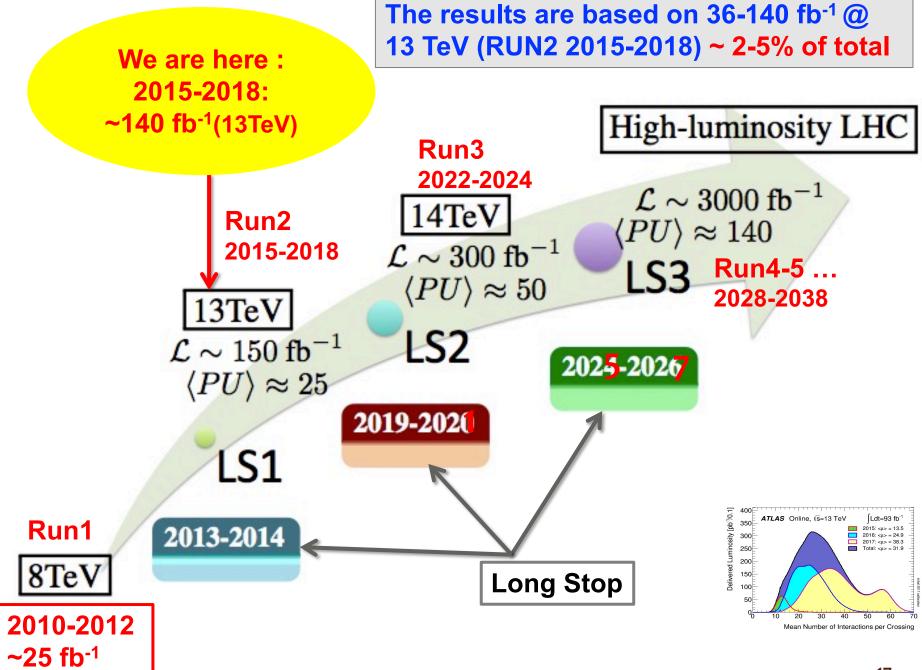
ATLAS


- 21m×15m, 14000 ton
- All silicon trackers, 4T
- solenoid magnet
- PbWO4+Tile calorimeters

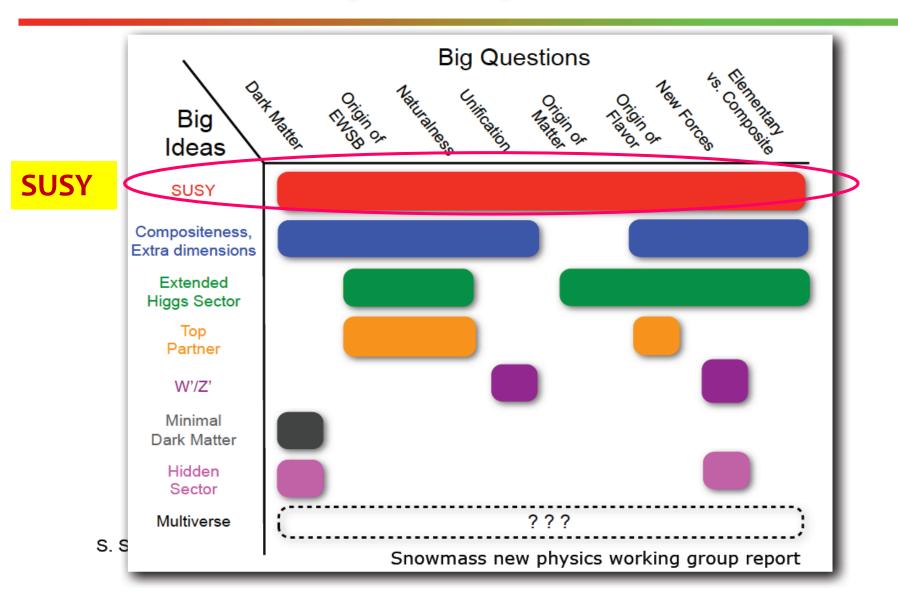
- Tracking (|η|<2.5, B=2T) :
 - Si pixels and strips
 - Transition Radiation Detector (e/π separation)
- Calorimetry (|η|<5) :
 - EM:Pb-LAr
 - HAD: Fe/scintillator (central), Cu/W-LAr (fwd)
- Muon Spectrometer (|η|<2.7) :</p>
 - air-core toroids with muon chambers



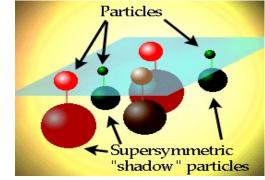
CERN's particle accelerator chain



Detector performance Highlights

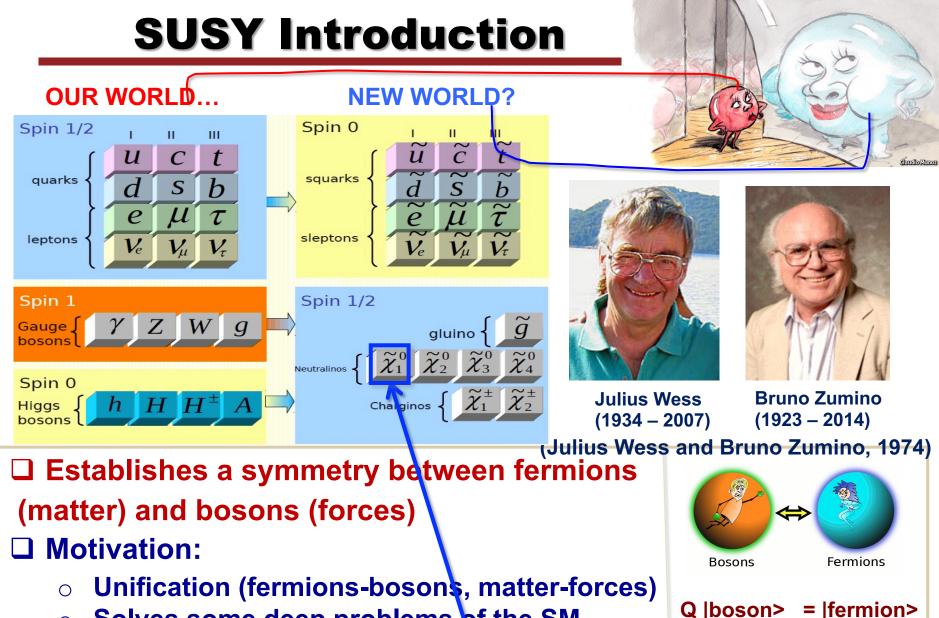

Bumper crop of results from Run 2 only possible thanks to excellent understanding of detector performance, and development of reconstruction and identification algorithms

BSM Searches @ LHC



New Physics beyond the SM

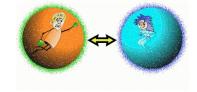
What is SUSY? How SUSY do help?


Higgs

SUSY

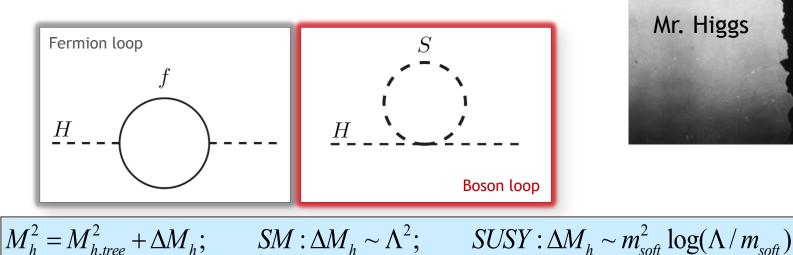
- Solves some deep problems of the SM
- Provide Dark Matter candidate

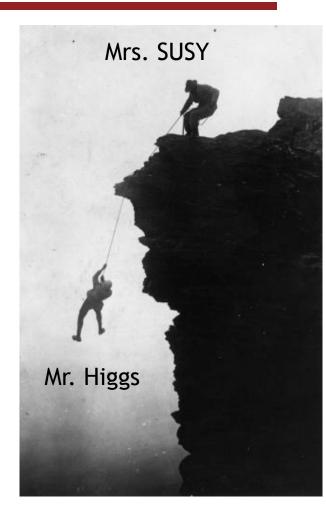
0

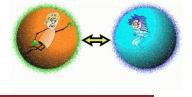

Spin differ by 1/2²⁰

Q |fermion> = |boson>

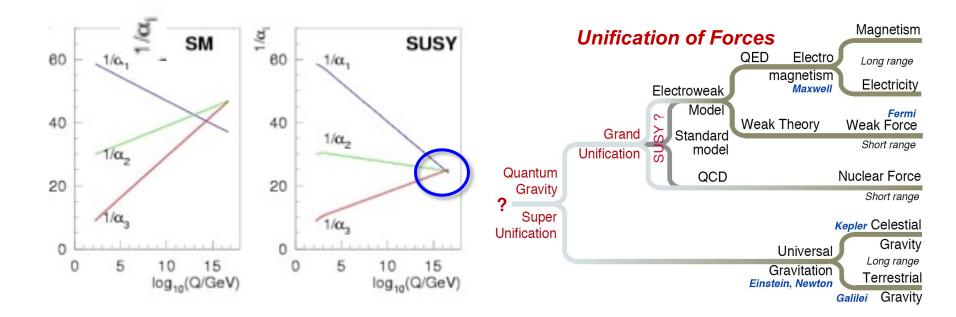
Minimal Supersymmetric Standard Model


Standard Model Particles and Fields		Supersymmetric Partners			
		Interaction Eigenstates		Mass Eigenstates	
Symbol	Name	Symbol	Name	Symbol	Name
q = u, d, c, s, t, b	quark	$\widetilde{q}_{\scriptscriptstyle L}, \widetilde{q}_{\scriptscriptstyle R}$	squark	$\widetilde{q}_1, \widetilde{q}_2$	squark
$l = e, \mu, \tau$	lepton	$\widetilde{l}_R,\widetilde{l}_L$	slepton	$\widetilde{l_1}, \widetilde{l_2}$	slepton
$l = v_e, v_\mu, v_\tau$	neutrino	$\widetilde{\mathcal{V}}$	sneutrino	$\widetilde{\mathcal{V}}$	sneutrino
g	gluon	$\delta \phi_0$	gluino	\widetilde{g}	gluino
W^{\pm}	W-boson	\widetilde{W}^{\pm}	wino	\sim +	
H^+_u, H^d	charged Higgs boson	$\widetilde{H}^{\scriptscriptstyle +}_{u}, \widetilde{H}^{\scriptscriptstyle -}_{d}$	charged higgsino	$\widetilde{\chi}_{1,2}^{\pm}$	chargino
В	B-field	\widetilde{B}	bino		
W^0	W ⁰ -field	\widetilde{W}^{0}	wino	∑ ⁰ X1,2,3,4	neutralino
H_u^0, H_d^0	neutral Higgs boson	$\widetilde{H}^0_u, \widetilde{H}^0_d$	neutral higgsino		


SUSY Introduction

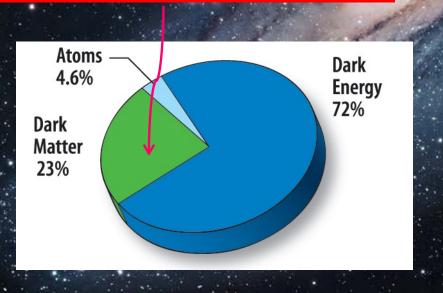

□ Solve hierarchy problem without "fine tuning"

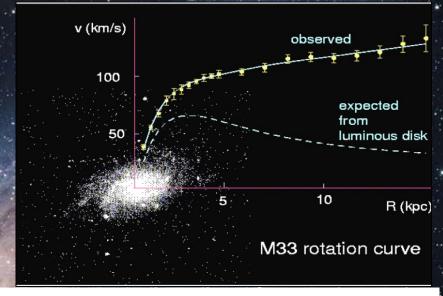
- Fermion and boson loops contribute with different signs to the Higgs radiative corrections
- Supersymmetric partner contributions to Higgs mass cancel SM contributions



SUSY Introduction

Unification of gauge couplings


- New particle content changes running of couplings
- Requires SUSY masses below few TeV



Provide Dark Matter candidate

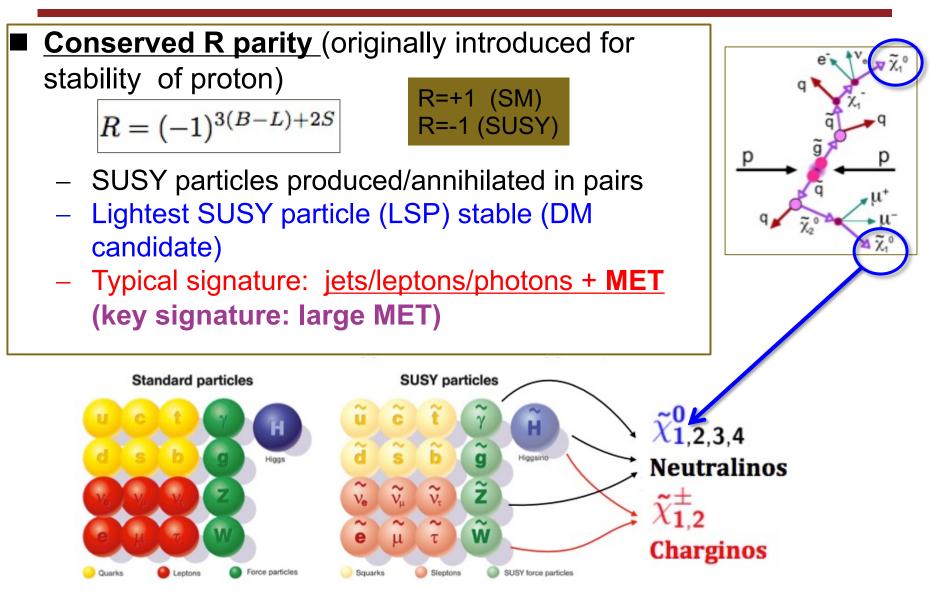
天文学家发现宇宙中很 大一部分是我们看不见 的 暗物质(明物质只 占4.6%)

'Supersymmetric' particles ?

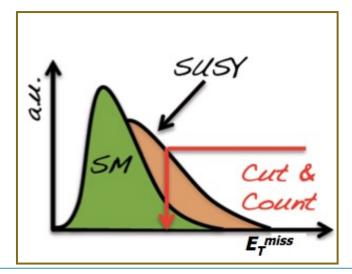
Provide perfect dark mater candidate - WIMP(lightest neutralino in R-parity conserving models)

stable
electrically neutron
same density as DM

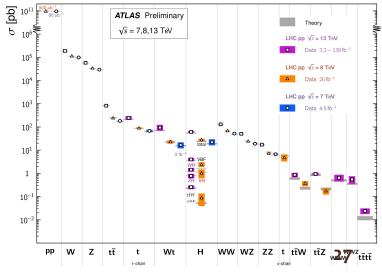
 $0.094 < \Omega_{CDM}h^2 < 0.136$ (95% CL)


How to hunt SUSY?

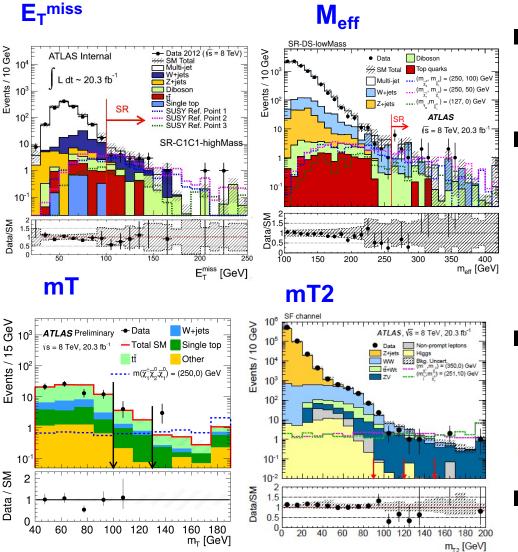
(TeV-scale) Supersymmetry (SUSY)



How do we start? - SUSY Signature


How do we search for SUSY?

- SUSY search strategy: search for deviation from SM from the tails
- SUSY sensitive variables: Try to establish excess of events in some sensitive kinematic distribution
- SM background: the discovery of new physics can only be claimed when SM backgrounds are understood well or under control
 - SM bgs understood very well ③
 - No hints for new physics \otimes



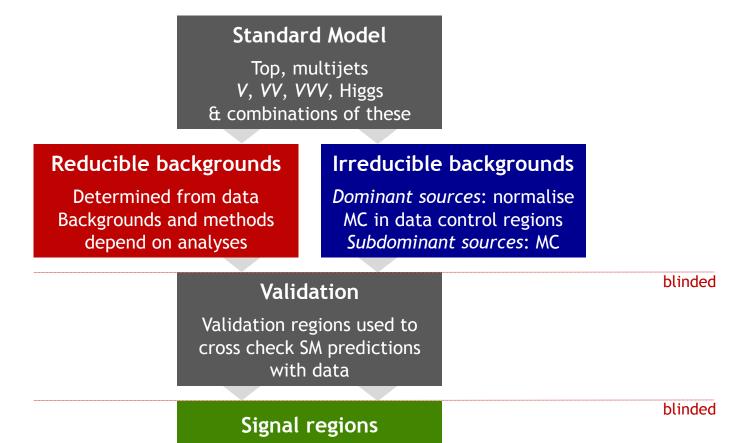
SM "backgrounds"- the big picture

Standard Model Total Production Cross Section Measurements Status: March 2021

1: Define SRs using SUSY Sensitive Variables

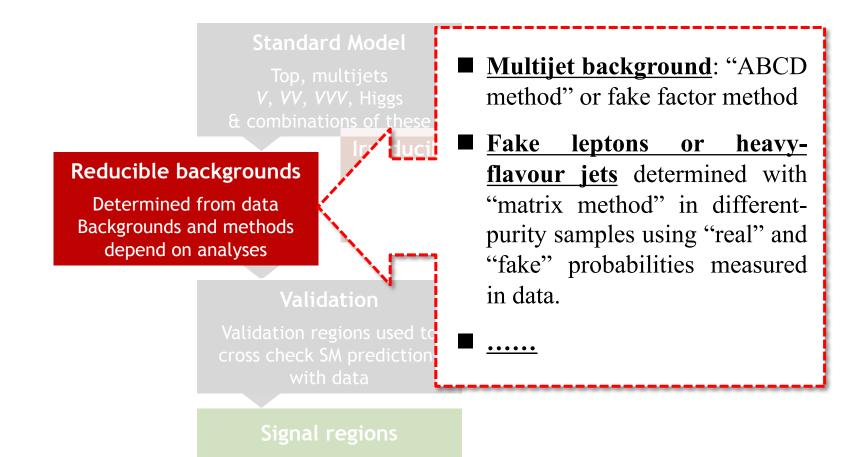
- **E**_T^{miss} from escaping LSP, to suppress bg from mismeasured jets and oth. SM BG
- Related to the sparticle mass scale, like effective mass (**M**_{eff})

$$M_{\text{eff}} \equiv \sum_{i=1}^{N_{\text{jets}}} p_{\text{T}}^{\text{jet},i} + \sum_{j=1}^{N_{\text{lep}}} p_{\text{T}}^{\text{lep},j} + E_{\text{T}}^{\text{miss}}$$


mT, mT2 (stransverse mass): suppress BG with Ws

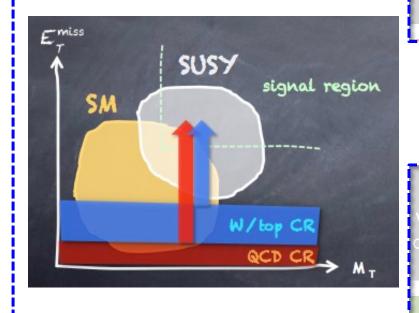
$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

Many others ...


2: SM Background estimations (data-driven + MC)

SUSY searches rely primarily on the understanding of the SM BG

2: SM Background estimations (data-driven + MC)


SUSY searches rely primarily on the understanding of the SM BG

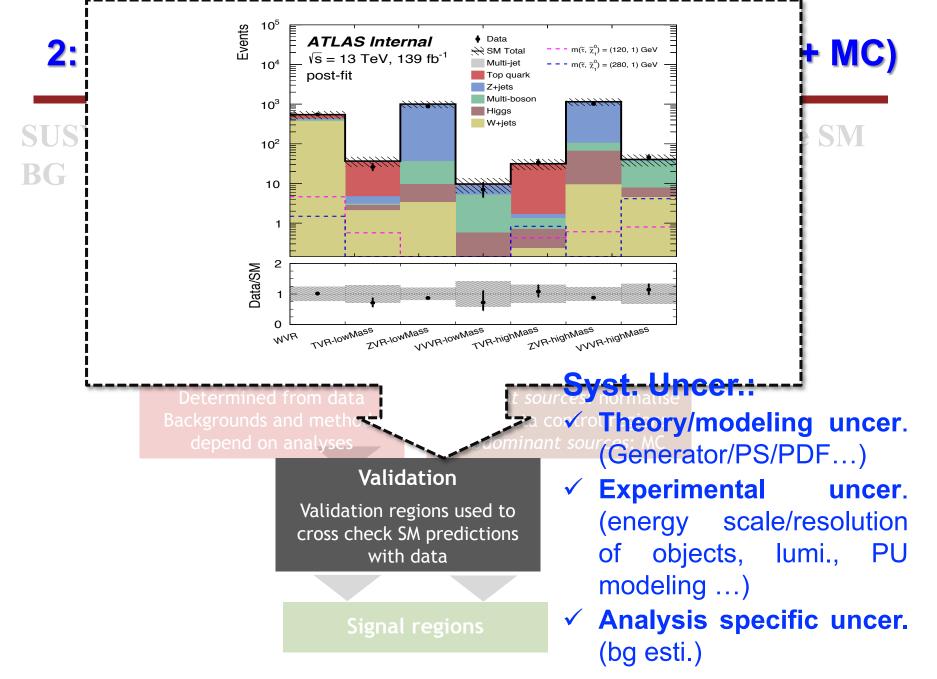
2: SM Background estimations (data-driven + MC)

SUSY searches rely primarily on the understanding of the SM BG

Normalise MC prediction in SRs using dedicated CRs \rightarrow transfer factor: T

Standard Model

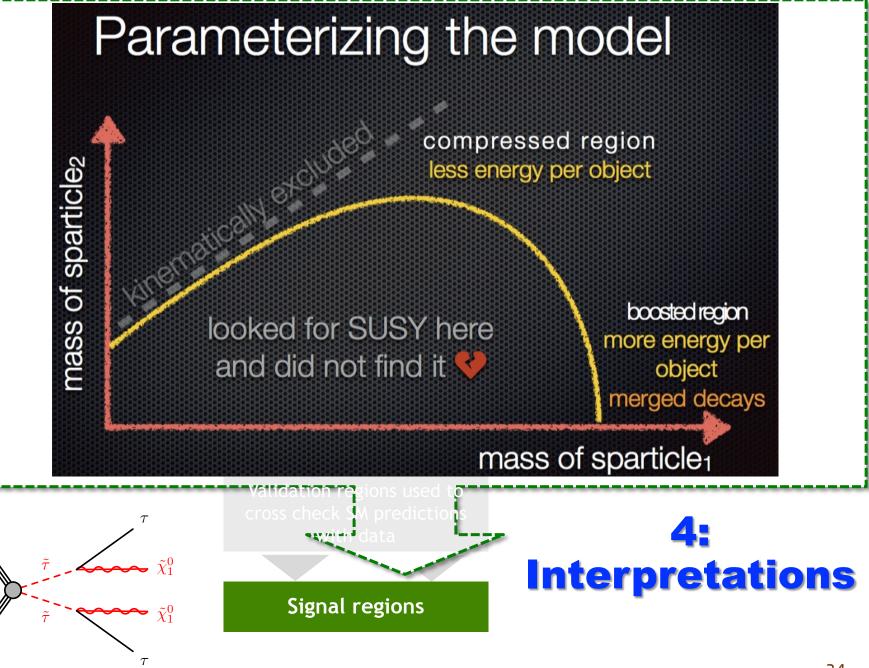
V, VV, VVV, Higgs


Irreducible backgrounds

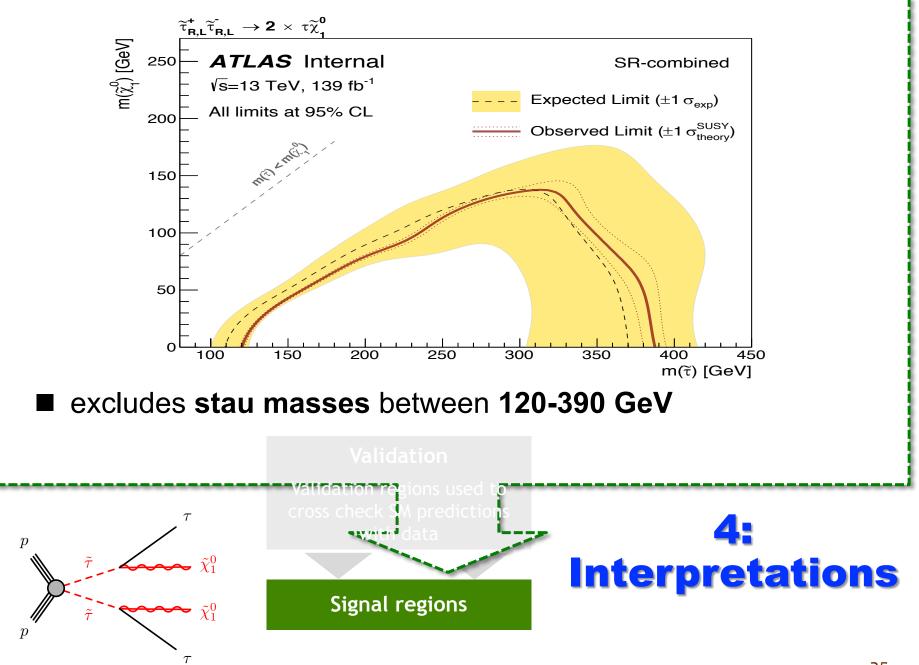
Dominant sources: normalise MC in data control regions Subdominant sources: MC

Validation

Validation regions used to cross check SM predictions with data


Signal regions

SM process	SR	SR	0 10 - ATLAS Internal ↓ data ★SM Total -
	-lowMass	-highMass	$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ψ W_{\pm} $W_$
Diboson	1.4 ± 0.8	2.6 ± 1.2	$m \in \mathbb{R}^{0}$ - (120 1) GoV
W+jets	1.5 ± 0.7	2.5 ± 1.9	$6 \qquad \qquad$
Top quark	$0.04^{+0.80}_{-0.04}$	2.0 ± 0.5	
Z+jets	$0.4^{+0.5}_{-0.4}$	$0.04^{+0.13}_{-0.04}$	
Higgs	$0.01\substack{+0.02 \\ -0.01}$	-	0 70 75 80 85 90 95 100 105 110 115 120
Multi-jet	2.6 ± 0.7	3.1 ± 1.5	m _{T2} [GeV]
SM total	6.0 ± 1.7	10.2 ± 3.3	No significant excess
Observed	10	7	except for SR-lowMass
		Validation alidation regions ross check 5M pre	used to


Signal regions

data

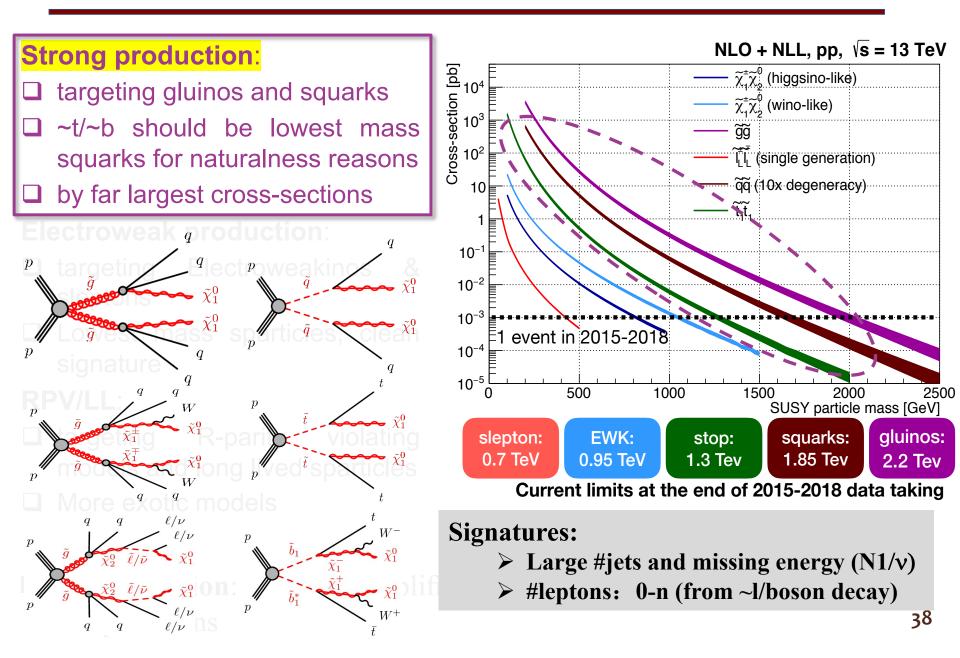
p

p

SUSY search results @ LHC

ATLAS public link CMS public link

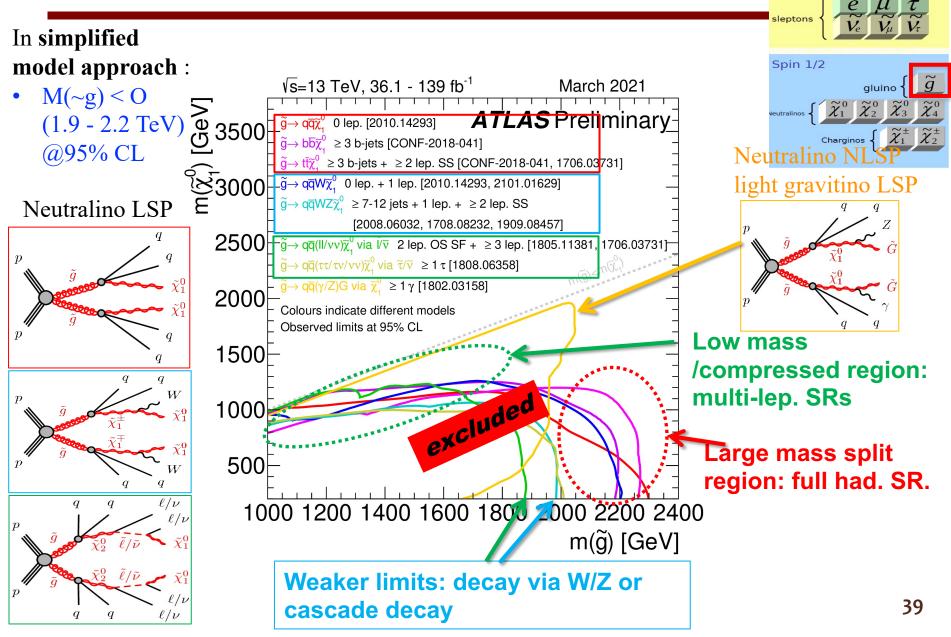
(TeV-scale) Supersymmetry (SUSY) SUSY Higgs

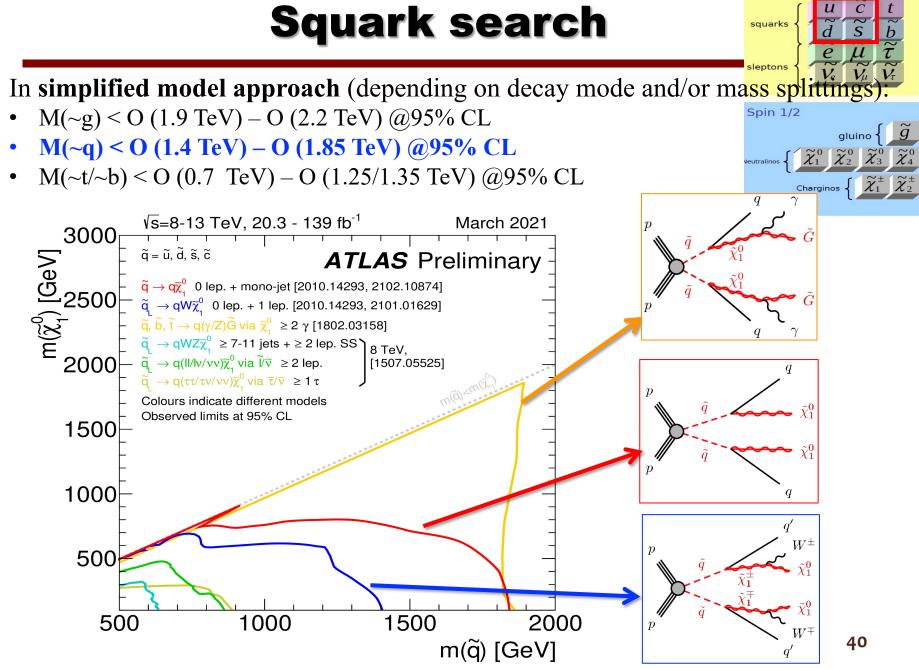

P. Higgs at CMS

Overview of SUSY Search

NLO + NLL, pp, $\sqrt{s} = 13$ TeV Strong production: Cross-section [pb] $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{5}^{0}$ (higgsino-like) targeting gluinos and squarks $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}$ (wino-like) ~t/~b should be lowest mass ĝĝ squarks for naturalness reasons $\overline{I_{1}I_{1}}$ (single generation) ãã (10x degeneracy) 10 □ by far largest cross-sections Electroweak production: 10^{-1} Electroweakinos targeting & 10⁻² sleptons 10⁻³ Lowest mass sparticles, clean event in 2015-2018 $\tilde{\chi}_1^{\pm}$ signature 10⁻⁵. 500 1500 2000 **RPV/LL**: 1000 2500 SUSY particle mass [GeV] $\tilde{\chi}_2^0$ **R**-parity violating □ targeting aluinos: squarks: slepton: EWK: stop: 0.7 TeV 0.95 TeV 1.3 Tev 1.85 Tev 2.2 Tev models and long lived sparticles Current limits at the end of 2015-2018 data taking More exotic models

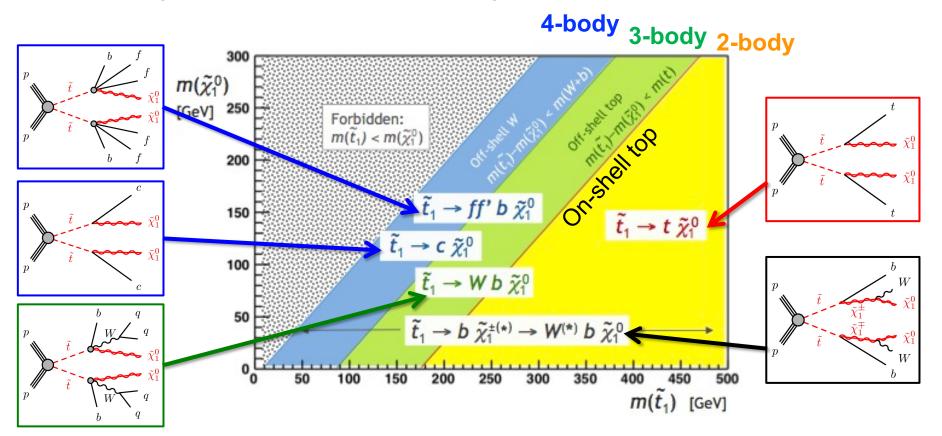
Interpretation: several simplified models but starting to include new interpretations
 37


Overview of SUSY Search


Gluino search

Spin 0

squarks


Spin 0

3rd Generation: stop

□ Search for stop directly from ~t~t production

Large spectrum of possible stop decays, covering range from low to heavy stop mass, various decay modes.

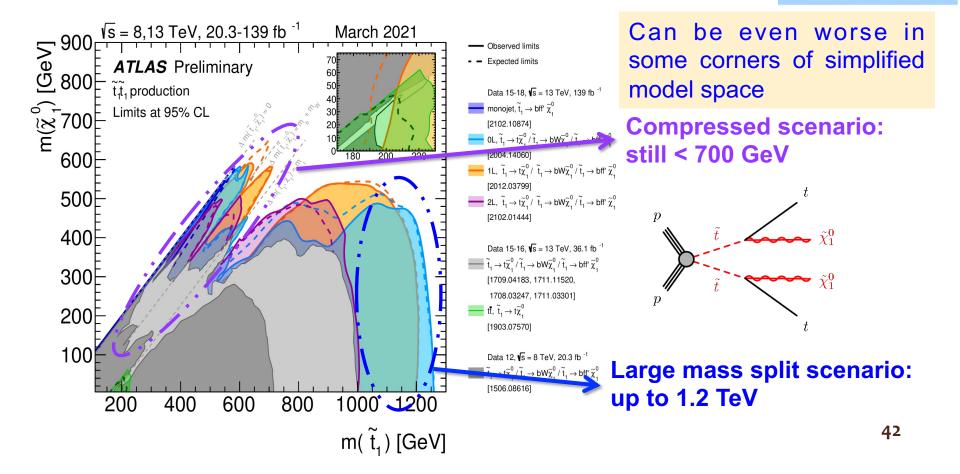
Stop search

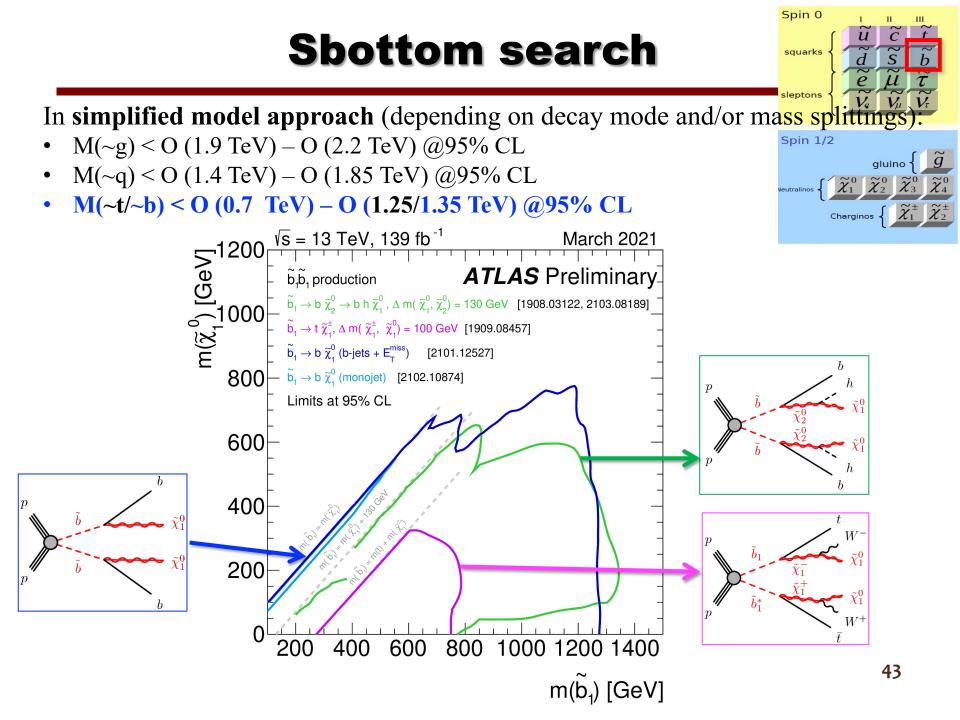
Spin 0

squarks

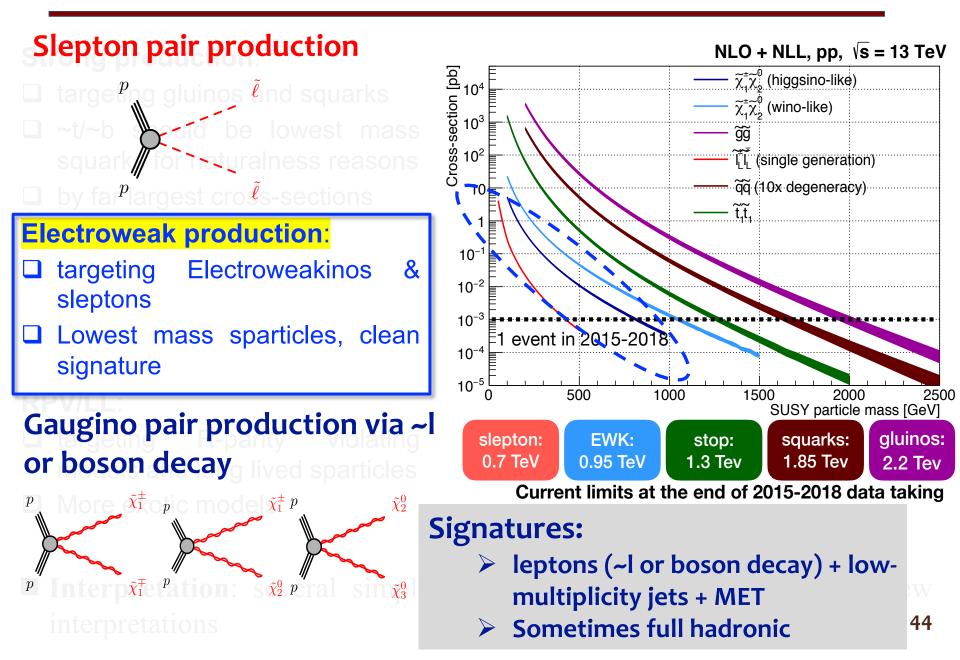
sleptons

Spin 1/2


gluino $\{ g \}$


 $\widetilde{\chi}_1^0 \widetilde{\chi}_2^0 \widetilde{\chi}_3^0 \widetilde{\chi}_4^0$

Charginos $\left\{ \begin{array}{c} \chi_1^{\pm} \\ \chi_1^{\pm} \end{array} \right\} \chi_2^{\pm}$


In simplified model approach (depending on decay mode and/or mass splittings)

- $M(\sim g) \le O(1.9 \text{ TeV}) O(2.2 \text{ TeV}) @95\% \text{ CL}$
- $M(\sim q) \le O(1.4 \text{ TeV}) O(1.85 \text{ TeV}) @95\% \text{ CL}$
- $M(-t/-b) \le O(0.7 \text{ TeV}) O(1.25/1.35 \text{ TeV}) @95\% \text{ CL}$

Overview of SUSY Search

EWK-ino production

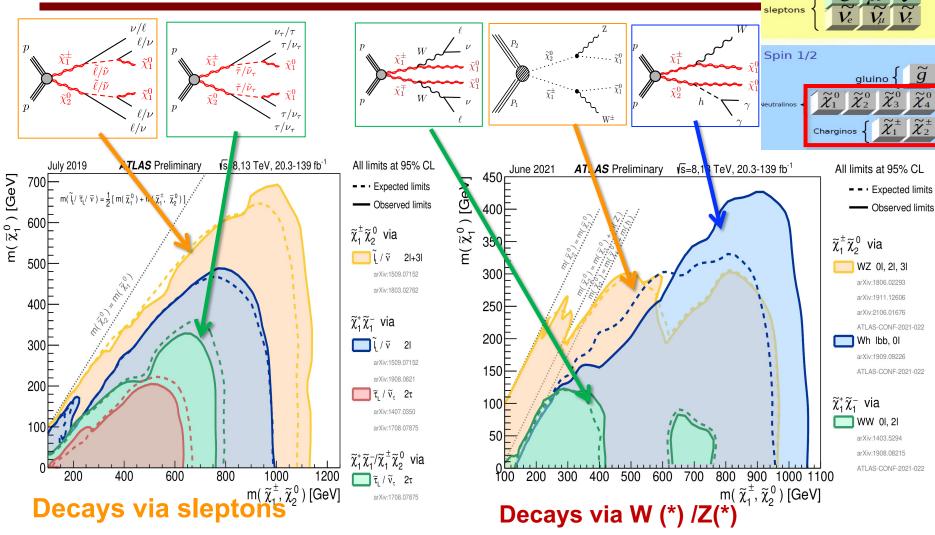
Mass splitting of the EWKinos depends on M1, M2, μ and tan β

Bino LSP				ino LSP	Wino LSP		
μ higgsino		$\widetilde{\chi_3^0}$, $\widetilde{\chi_4^0}$, $\widetilde{\chi_2^\pm}$	M ₁ <u>bino</u>	$\widetilde{\chi_4^0}$	M1 <u>bino</u>	$\overline{\chi_4^0}$	
M ₂ wino	_	$\widetilde{\chi^0_2}, \widetilde{\chi^\pm_1}$	M ₂ wino	$\widetilde{\chi_{3,}^{0}}, \widetilde{\chi_{2}^{\pm}}$	higgsino µ	$\widetilde{\chi_{2}^{0}}, \widetilde{\chi_{3}^{0}}, \widetilde{\chi_{2}^{\pm}}$	
M ₁ —		$\widetilde{\chi_1^0}$	<mark>higgsino</mark> μ	$\widetilde{\chi_1^0}, \widetilde{\chi_2^0}, \widetilde{\chi_1^\pm}$	M2 wino	$\widetilde{\chi_1^0} \widetilde{\chi_1^\pm}$	

Standard wino-bino case: large ∆m between N1 and C1/N2;

→ MET + hard leptons

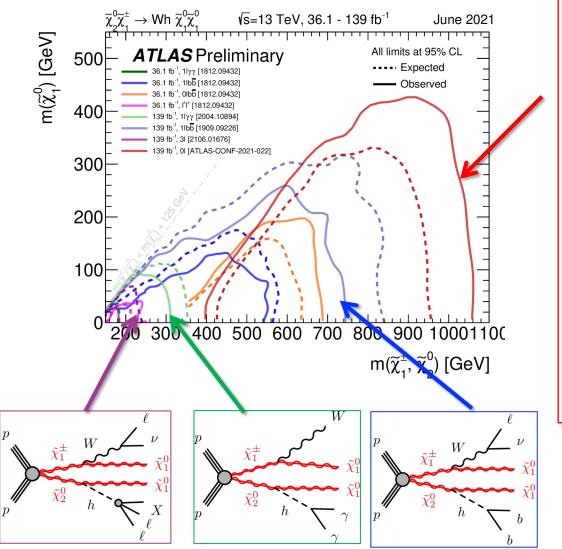
N1,N2,C1 almost degenerate: experimental challenging;

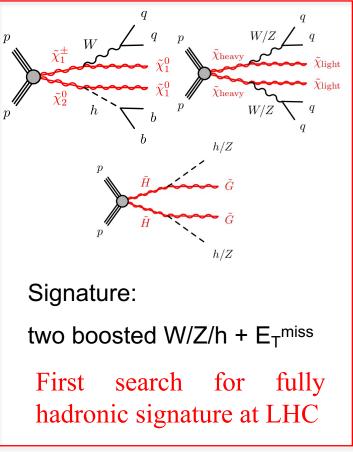

→ MET + soft leptons

- Lower xsec than higgsino LSP;
- → WW+MET dominant;

EWKino search (summary)

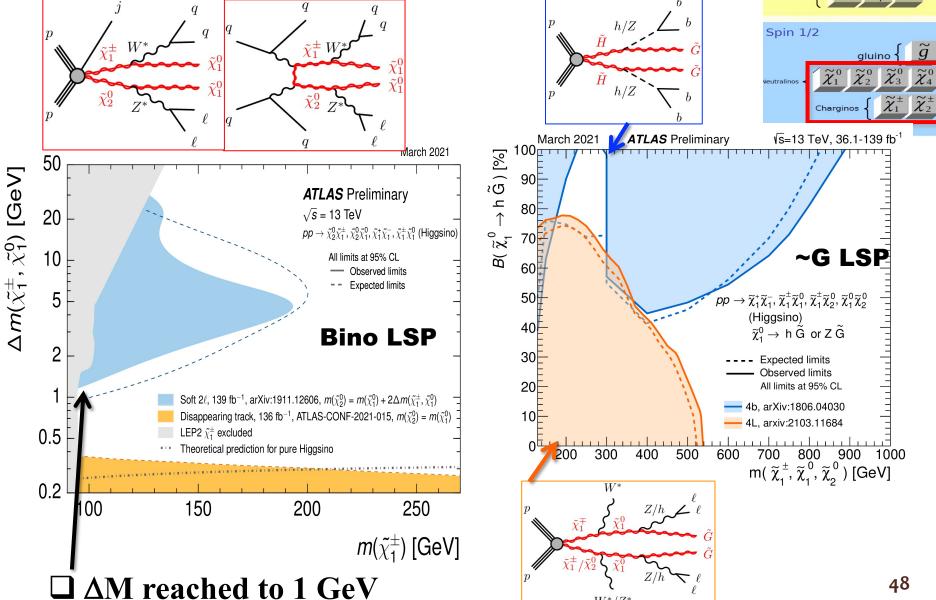
squarks $\begin{cases} \tilde{u} & \tilde{c} \\ \tilde{d} & \tilde{c} \end{cases}$

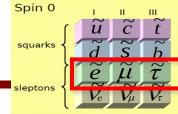

Spin 0

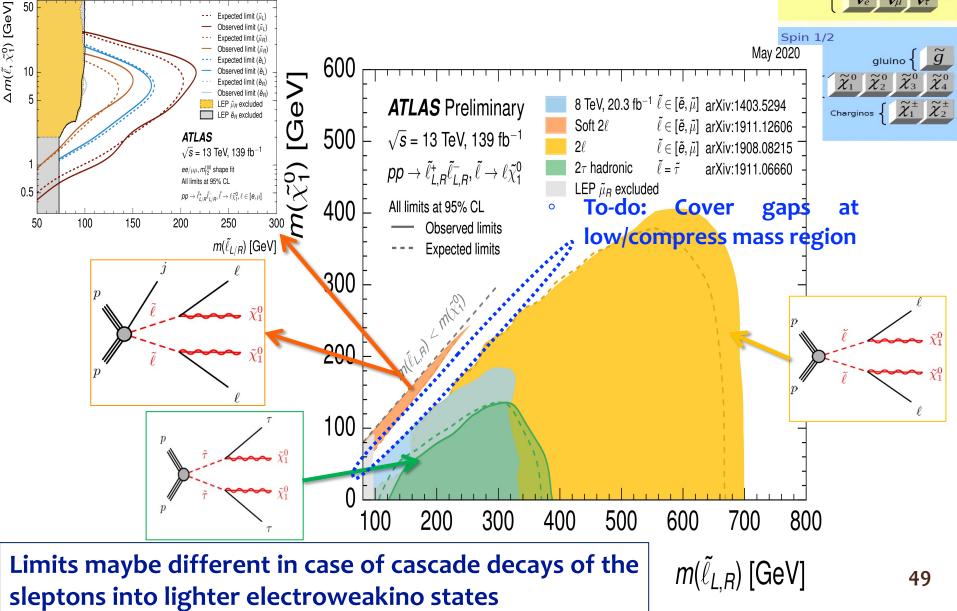


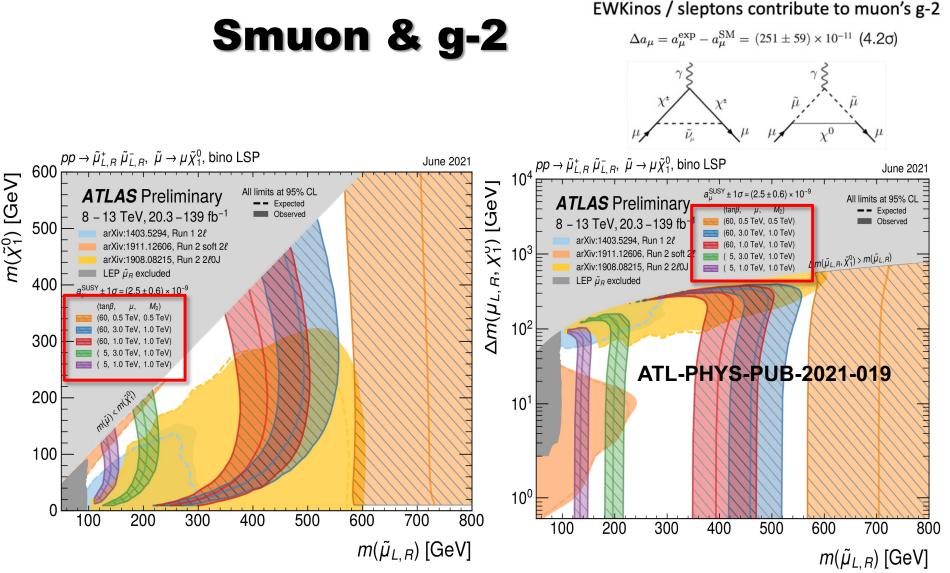
D Powerful exclusions in decays via sleptons (C1/N2 up to 0.6-1.1 TeV)

□ Comparable exclusions in decays via bosons inc. full hadronic FS (up to 400-1060 GeV)


Electroweakinos: Wh


Higgsino search


Spin 0 Ш ш squarks sleptons Spin 1/2

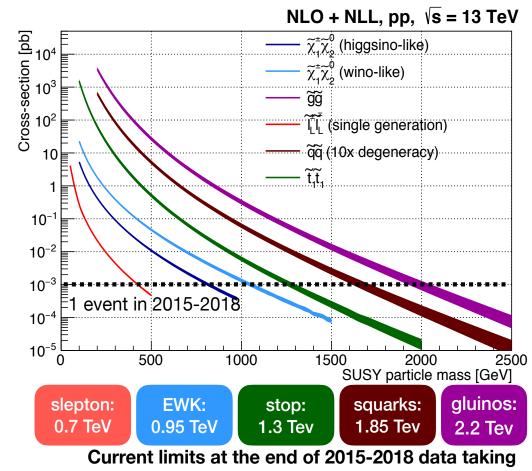


 W^*/Z^*

Slepton search

Examples of pMSSM parameters compatible with µ g-2 anomaly

To-do: Cover gaps at low/compressed mass region from experiments


Overview of SUSY Search

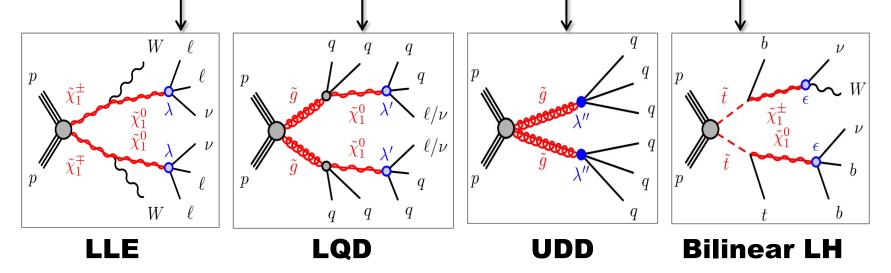
Strong production:

- targeting gluinos and squarks
- ~t/~b should be lowest mass squarks for naturalness reasons
- by far largest cross-sections
- Electroweak production:
- targeting Electroweakinos & sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

Interpretation: several simplified models but starting to include new interpretations 51

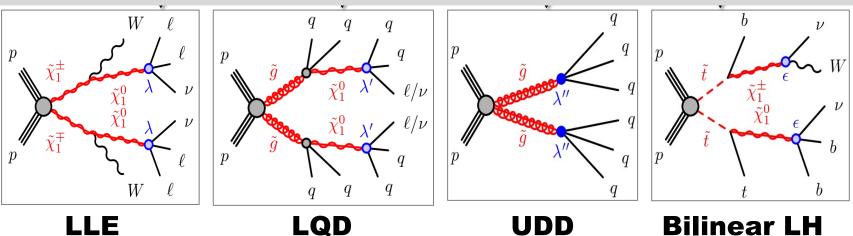

RPV SUSY

- Precision SM measurements support baryon and lepton number conservation, while some MSSM couplings do not
- Search for R-parity Violating SUSY

 $R = (-1)^{3(B-L)+2S}$ R=+1 (SM); R=-1 (SUSY)

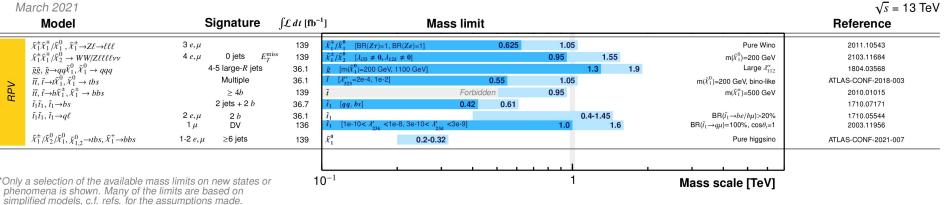
Super-potential with RPV of lepton or baryon number

$$W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$$



RPV SUSY

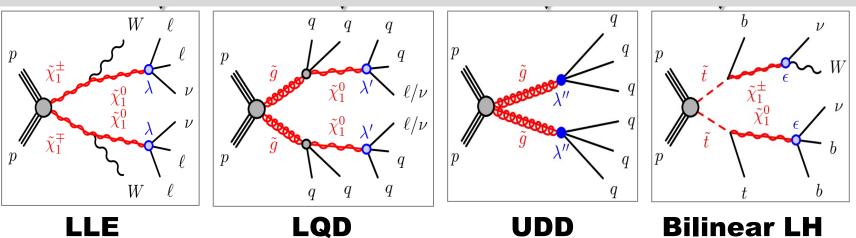
- Precision SM measurements support baryon and lepton number conservation, while some MSSM couplings do not
- Search for R-parity Violating SUSY


Signatures:

- Small missing energy (v)
- Final states depending on scenarios:
 - LLE (decays via Lepton number-violating couplings): multi-leptons
 - LQD (decays via Lepton/Baryon number-violating couplings): lepton+jets
 - UDD (decays via Baryon number-violating couplings): multi-jets
 - LH: lepton+jets

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2021



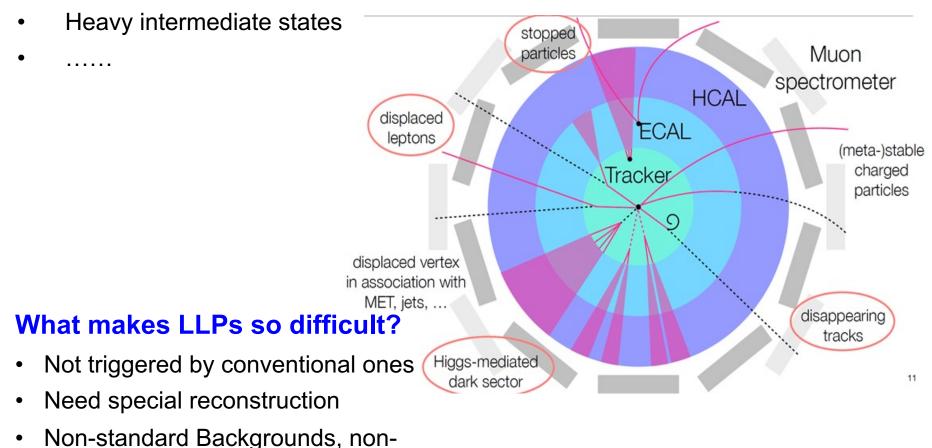
Signatures:

Small missing energy (v)

\geq Final states depending on scenarios:

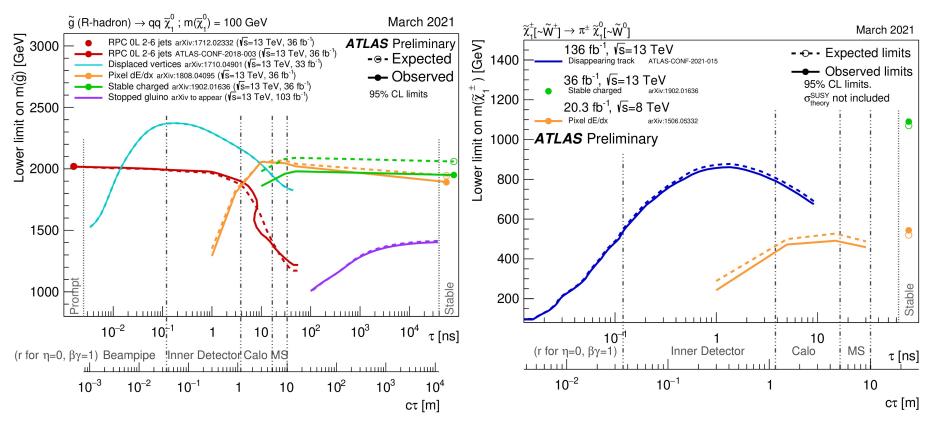
- LLE (decays via Lepton number-violating couplings): multi-leptons
- LQD (decays via Lepton/Baryon number-violating couplings): lepton+jets
- UDD (decays via Baryon number-violating couplings): multi-jets
- LH: lepton+jets

ATLAS Preliminary


Long-lived Particles (LLP)

Long lifetimes result from a few simple physical mechanisms:

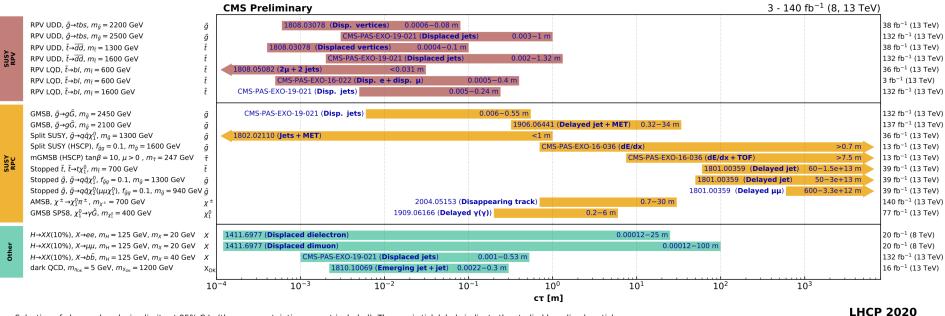
• Small couplings (ex. RPV SUSY)


simulated

• Limited phase space: small mass splitting (ex. compressed SUSY, ...)

Long-lived Particles (LLP)

SUSY Models - ATLAS



Long-lived chargino

Long-lived R-hadron production

Long-lived Particles (LLP)

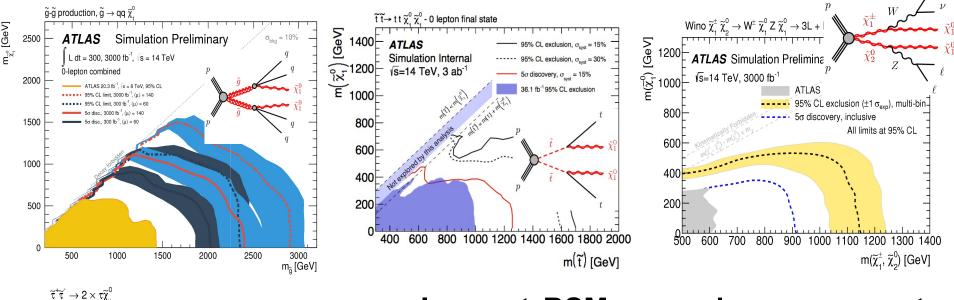
Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2021

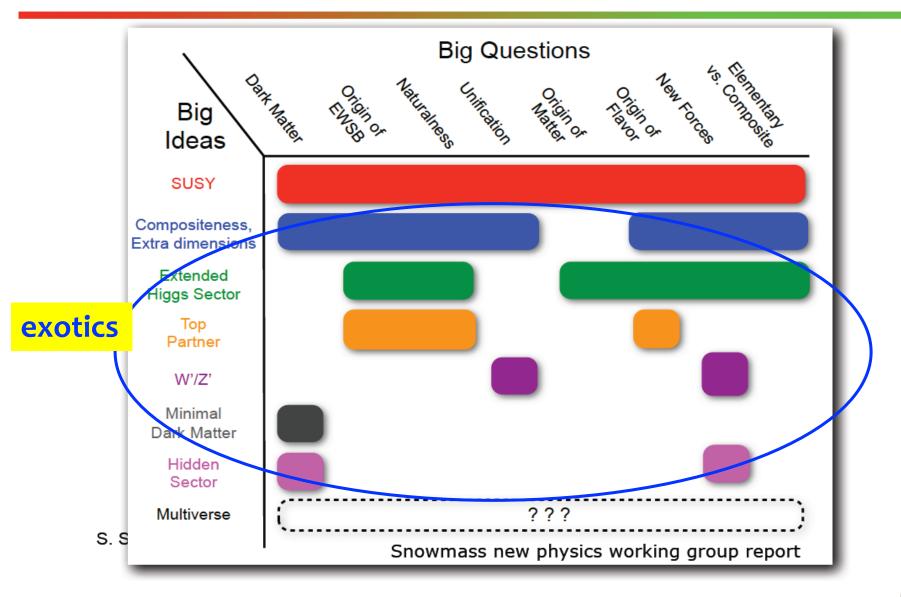
101	Model	Si	gnature	e ∫.	` <i>L dt</i> [fb⁻	¹] Mass	limit			Reference
	$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q ilde{\chi}_1^0$	0 <i>e</i> , µ	2-6 jets	Fmiss	139	<i>q</i> [1×, 8× Degen.]	10	1.85	m(𝔅̃_1)<400 GeV	2010.14293
S	$qq, q \rightarrow q\chi_1$	mono-jet	1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1	\tilde{q} [8x Degen.]	0.9	1.00	$m(\mathcal{X}_1) < 400 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\mathcal{X}}_1^0) = 5 \text{ GeV}$	2102.10874
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ĝ ĝ	Forbidden	1.15-1.95	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV} \ m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
Sei	$\tilde{g}\tilde{g}, \tilde{g} { ightarrow} q \bar{q} W \tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i>	2-6 jets		139	ĝ		2	2 $m(\tilde{\chi}_1^0) < 600 \text{GeV}$	2101.01629
ve	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$ee, \mu\mu$	2 jets	$E_T^{\rm miss}$	36.1	ĝ		1.2	$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.11381
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	ĝ ĝ	1	1.97 .15	$m(ilde{\chi}_1^0) < 600~GeV$ $m(ilde{g}) - m(ilde{\chi}_1^0) = 200~GeV$	2008.06032 1909.08457
4	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	ë ë		2. 1.25	25 m(\tilde{x}_1^0)<200 GeV m(\tilde{g})-m(\tilde{x}_1^0)=300 GeV	ATLAS-CONF-2018-041 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{\rm miss}$	139	$egin{array}{c} ilde{b}_1 \ ilde{b}_1 \ ilde{b}_1 \end{array}$	0.68	1.255	m($ ilde{\chi}_1^0$)<400 GeV 10 GeV< Δ m($ ilde{b}_1, ilde{\chi}_1^0$)<20 GeV	2101.12527 2101.12527
squarks oduction	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eba_1 & eba_1 $	0 0.13-0.85	23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}^{0}_{2},\tilde{\chi}^{0}_{1}){=}130~{\rm GeV},~m(\tilde{\chi}^{0}_{1}){=}100~{\rm GeV} \\ \Delta m(\tilde{\chi}^{0}_{2},\tilde{\chi}^{0}_{1}){=}130~{\rm GeV},~m(\tilde{\chi}^{0}_{1}){=}0~{\rm GeV} \end{array}$	1908.03122 ATLAS-CONF-2020-031
qua	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1		1.25	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
n. s Droc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	$E_T^{\rm miss}$	139	\tilde{t}_1	Forbidden 0.65		$m(\tilde{\chi}_1^0)$ =500 GeV	2012.03799
3 rd gen. a	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ	2 jets/1 b	E_T^{miss}	139	\tilde{t}_1	Forbidden	1.4	m($\tilde{\tau}_1$)=800 GeV	ATLAS-CONF-2021-008
3 rd dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ		$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	\tilde{c} \tilde{t}_1	0.85 0.55		$m(\widetilde{\chi}_1^0)$ =0 GeV $m(\widetilde{t}_1,\widetilde{c})$ - $m(\widetilde{\chi}_1^0)$ =5 GeV	1805.01649 2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	139	Ĩ ₁	0.067-	1.18	$m(\tilde{\chi}_2^0)$ =500 GeV	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>e</i> , µ	1 <i>b</i>	$E_T^{\rm miss}$	139	Ĩ ₂	Forbidden 0.86		$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e,μ ee,μμ	≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205	0.64		$\mathfrak{m}(ilde{\chi}_1^{\pm})=0$ $\mathfrak{m}(ilde{\chi}_1^{\pm})-\mathfrak{m}(ilde{\chi}_1^{0})=5~{ extsf{GeV}}$	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	0.42		$m(\tilde{\chi}_1^0)=0$	1908.08215
t	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	0-1 <i>e</i> ,μ	$2 b/2 \gamma$	$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden	0.74		$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
EW direct	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	1.0		$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$	1908.08215
di	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\mathcal{X}}_{1}^{0}$	2τ	0 ioto	E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3 0.1	0.7		$m(\tilde{\chi}_1^0)=0$	1911.06660 1908.08215
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\tilde{\ell}} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e,μ ee,μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$\tilde{\ell}$ 0.256	0.7		$\mathfrak{m}(ilde{\chi}_1^0)=0$ $\mathfrak{m}(ilde{\ell})-\mathfrak{m}(ilde{\chi}_1^0)=10~{ ext{GeV}}$	1908.08215 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 139	<i>Ĥ</i> 0.13-0.23 <i>Ĥ</i>	0.29-0.88 0.55		$BR(\tilde{\chi}^0_1 o h\tilde{G})$ =1 $BR(\tilde{\chi}^0_1 o Z\tilde{G})$ =1	1806.04030 2103.11684
7	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ 0.21	0.66		Pure Wino Pure higgsino	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
Long-lived particles	Stable g R-hadron		Multiple		36.1	λ ₁ 0.21		2.0	Ture niggsino	1902.01636,1808.04095
g-l	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$		2.0	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
-on pa	$\tilde{\ell}\ell, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep	Manapie	$E_T^{\rm miss}$	139	$\tilde{e}, \tilde{\mu}$	0.7	2.03	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
				1		τ̃ 0.34			$ au(ilde{\ell}) = 0.1 \text{ ns}$	2011.07812
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 , \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.625 1.05		Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW / Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$	0.95	1.55	$m(\tilde{\chi}_1^0)$ =200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-	5 large- <i>R</i> je	ts	36.1	\widetilde{g} [m($\widetilde{\chi}_1^0$)=200 GeV, 1100 GeV]		1.3 1.9	Large λ_{112}''	1804.03568
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1	\tilde{t} [λ''_{323} =2e-4, 1e-2]	0.55 1.05		$m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003
RPV	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow bbs$		$\geq 4b$		139	7	Forbidden 0.95		$m(\tilde{\chi}_1^{\pm})$ =500 GeV	2010.01015
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell $	2 e,µ	2 jets + 2 b 2 b		36.7 36.1		0.42 0.61	0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.07171 1710.05544
	$\iota_{1\iota_{1}}, \iota_{1} \rightarrow q\iota$	2 e,μ 1 μ	2 b DV		136.1	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3	e-9] 1.0	1.6	$BR(\tilde{t}_1 \to q\mu) = 100\%, \ \cos\theta_t = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 <i>e</i> , <i>µ</i>	≥6 jets		139	$\tilde{\chi}_{1}^{0}$ 0.2-0.32			Pure higgsino	ATLAS-CONF-2021-007
*0 /		<i>,.</i> .,				L				
phen	a selection of the available mass omena is shown. Many of the lin	nits on n nits are bas	new states sed on	s or	1	0 ⁻¹			Mass scale [TeV]	58

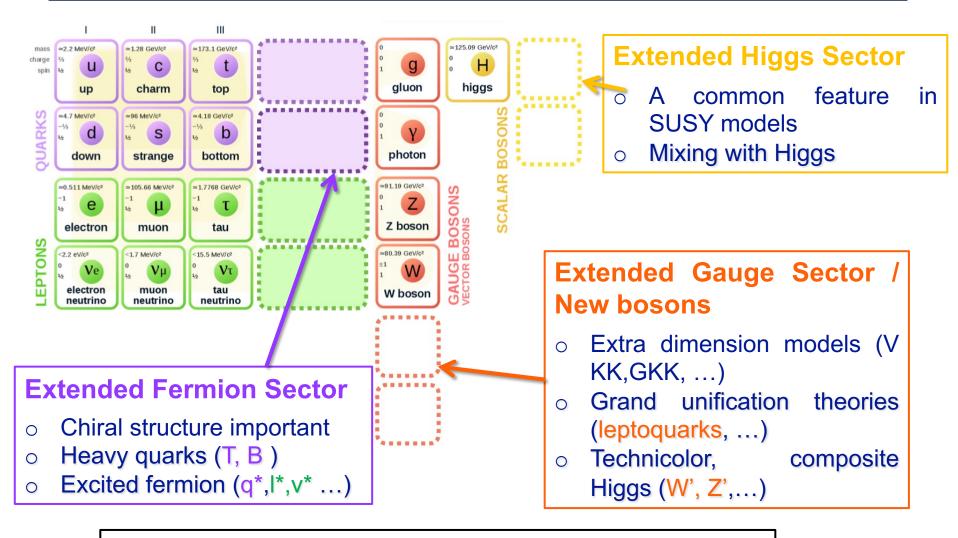

simplified models, c.f. refs. for the assumptions made.

Prospects at HL-LHC: SUSY

ATL-PHYS-PUB-2018-048

Discovery potential with 3000 fb⁻¹@14TeV

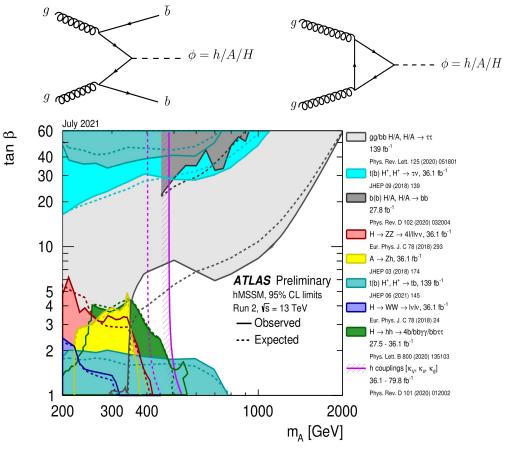

Gluinos ~ 2.5 TeV; Stop ~ 1.2 TeV; EWKinos ~ 0.9 TeV; Staus ~ 0.5 TeV

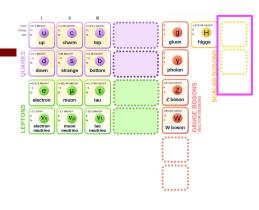

5 800 5 700 **ATLAS** Simulation Preliminary **Baseline Uncertainties** 600 ع ع ع √s=14 TeV, 3000 fb⁻¹ $\tilde{\tau}_{B1}$: 95% CL exclusion (± 1 σ_{s} All limits at 95% CL 95% CL exclusion 500 95% CL exclusion $\tilde{\tau}_{p_1}$: 5 σ discovery 400 5σ discovery 300 200 100 600 700 800 900 1000 100 200 300 400 500 m(τ) [GeV]

In most BSM scenarios, we expect the HL-LHC will increase the present reach in mass and coupling by 20 - 50% and potentially discover new physics that is currently unconstrained.

New Physics beyond the SM

Exotics - various extension of SM

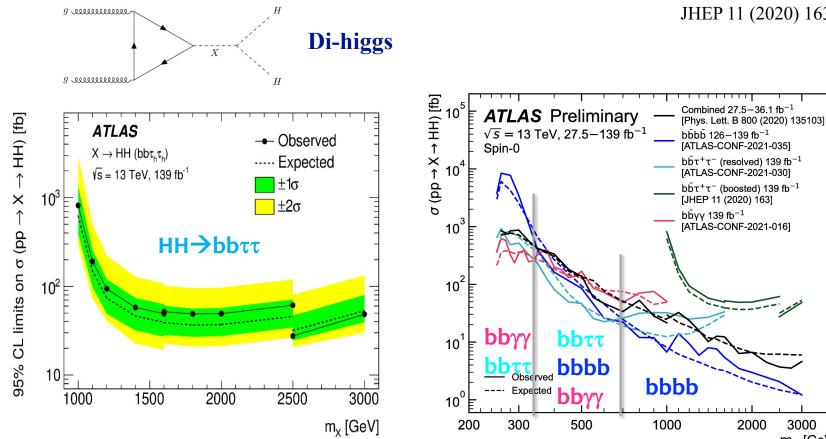


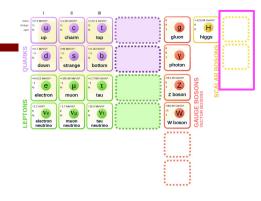

Compositeness

• New forces/particles integrate out at low energies (SM)

Extended Higgs sector – BSM Higgs

- Many models: MSSM, 2HDM, etc.
- Benchmark models: MSSM-like
 - **5 Higgs bosons:** h, H, A, H^{+}
 - 2 free parameters at tree level: m_A , $\tan \beta = v_u / v_d$
- Search for extra Higgs bosons (BSM Higgs)





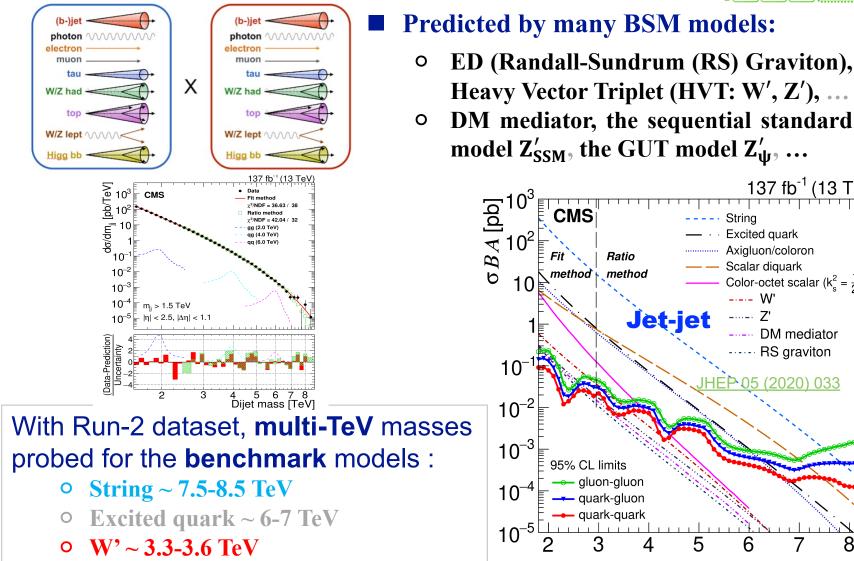
ATL-PHYS-PUB-2021-030

Extended Higgs sector – BSM Higgs

- Many models: MSSM, 2HDM, etc.
- **Benchmark models: MSSM-like**
 - **5 Higgs bosons:** h, H, A, H^{\mp} 0
 - **2 free parameters at tree level:** m_A , tan $\beta = v_u/v_d$ Ο
 - Search for extra Higgs bosons (BSM Higgs)

ATL-PHYS-PUB-2021-031 JHEP 11 (2020) 163

3000

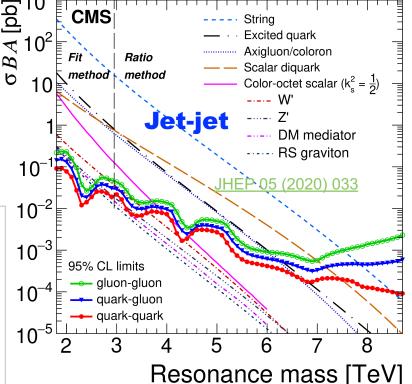

m_X [GeV]

Extended gauge sector – Resonance (j

higgs strange bottom photor electron muon

137 fb⁻¹ (13 TeV)

Classic resonant signatures:

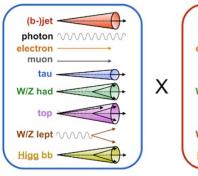

Axigluon/coloron Ratio Scalar diquark method method Color-octet scalar $(k_s^2 = \frac{1}{2})$

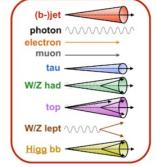
String

Excited guark

 10^{3}

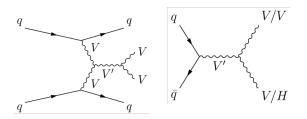
 10^{2}

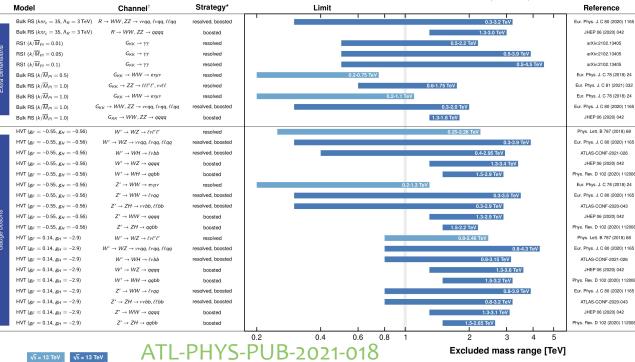



Extended gauge sector – Resonance (VV

 $\mathcal{L} = (36.1 - 139) \text{ fb}^{-1}$

Classic resonant signatures:


Predicted by many BSM models:


- ED (Randall-Sundrum (RS) Graviton), Heavy Vector Triplet (HVT: W', Z'), ...
- DM mediator, the sequential standard model Z'_{SSM} , the GUT model Z'_{ψ} , ...

ATLAS Diboson Searches - 95% CL Exclusion Limits

Heavy Vector
 Triplet (HVT)

 $\mathcal{L} = 139 \text{ fb}^{-1}$ *small-radius (large-radius) jets are used in resolved (boosted) events
¹ with $\ell = \mu$, e

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

Extended gauge sector – Resonance (II)

Classic resonant signatures:

photon www.

(b-)iet

electron

W/Z had

Hiaa bb

top

W/Z lept

Х

arXiv:2103.02708

muon

(b-)jet

electron

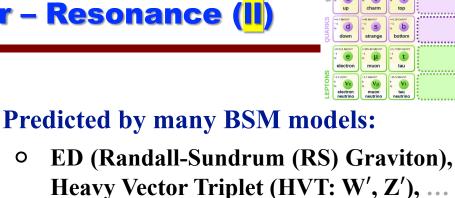
W/Z had

Higg bb

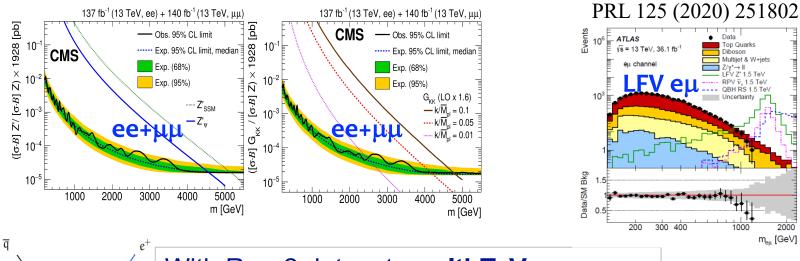
muon

tau

top


W/Z lept MM

Z′/G


winn

e-

photon www.

DM mediator, the sequential standard 0 model Z'_{SSM} , the GUT model Z'_{ψ} , ...

0

With Run-2 dataset, **multi-TeV** masses probed for the **benchmark** models :

✓
$$G_{kk}$$
 ~ 2.5-4.8 TeV

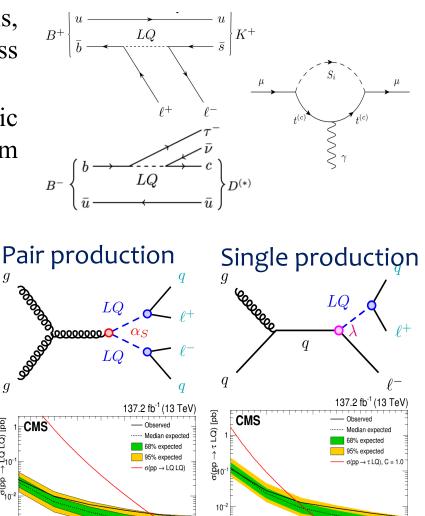
higgs

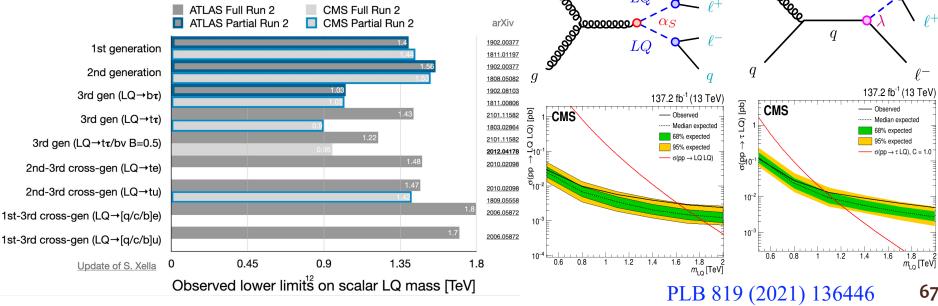
gluon Y

photon

Z bosor

W boson

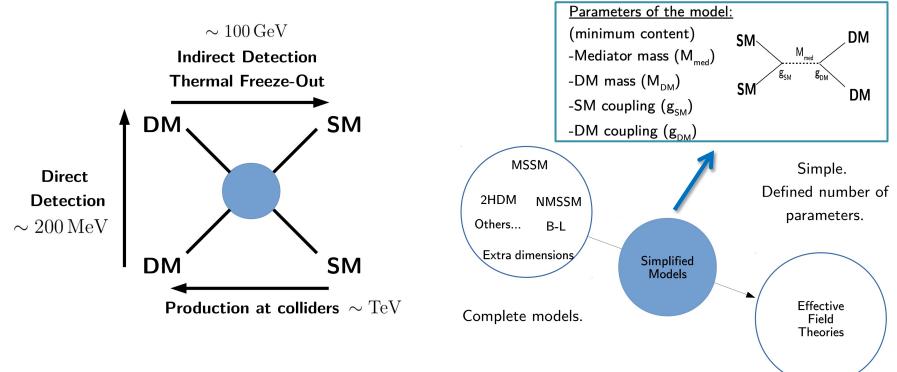

b bottom


tau

Extended gauge sector – Leptoquarks (LQ)

- Leptoquarks (LQs) arise in many models, such as grand unified theories, compositeness models and superstring theories.
- **LQs:** carry colour charge, fractional electric charge, and both lepton and baryon quantum numbers.

m(LQ_{mix}) > 0.9-1.8TeV

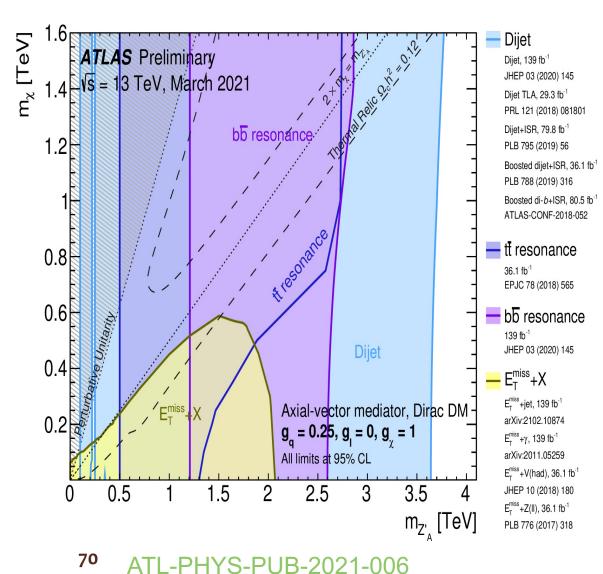


Could explain B anomalies and μ g-2

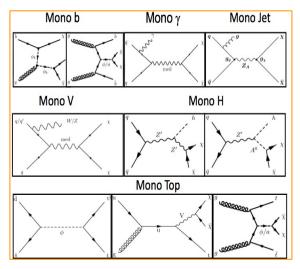
Extended fermion sector С higgs charm aluon Y d S b photon down strange bottom electron muon tau Z boson Heavy Vector-like fermions (T, B, Tau ...) Ve W electron neutrino muon W bosor New heavy partner of top in loop to solve hierarchy problem Among the best constraints on Singlet/Doublet BB, TT: 1.2-1.4 TeV \cap Excited fermion (q*,l*,v* ...) see#64 q'(q)Boosted Z candidate 土 222 W^{-} (Z) > 1b-tag W^* t/b2000000 $\Lambda\Lambda\Lambda\Lambda$ т bi b(t)2999999 large-R jets $\bar{b}(\bar{t})$ v V (or $pp \rightarrow TT/BB$ $T \rightarrow Wb/Zt/Ht$ $B \rightarrow Wt/Zb/Hb$ 136 fb 1(2016+2017+2018,13 TeV) → tZbq) [pb] 10_E otal cross-section [fb] Observed CMS Preliminary $\mathfrak{s}(\mathsf{pp} \to \mathsf{T}\overline{\mathsf{T}})$ [pb] ATLAS Preliminary Obs. limit 2 lep Median expected Obs. limit 3 + 4 lep ATLAS Preliminary Theory (NNLO+NNLL) √s = 13 TeV, 139 fb⁻¹ 68% expected --- Exp. limit 2 + 3 + 4 lep Obs. Limit √s = 13 TeV, 139 fb⁻¹ Obs. limit 2 + 3 + 4 lep 95% expected 95% CL Exp. Limit 10²= Limits at 95% CL xp. limit ± 1σ 1 TT Doublet (XT) 95% CL Exp. ± 1σ n(NLO), Singlet T, D/M=0.3 Exp. limit $\pm 2\sigma$ 95% CL Exp. ± 2σ 2I + 3I Combination Type-III seesaw t Tbq ----2/ (Exp.) ----3/ (Exp.) $(N_{\bullet}^0 L^{\pm} \rightarrow e, \mu, \tau) = 1/3$ Heavy Single $T \rightarrow Z(vv)t$ 10 Double TT 10⁻² 10⁻³ 10^{-2} 400 500 600 800 900 1200 700 1000 1100 the faulture of endanders to stradued m(N,L[±]) [GeV] 800 1000 1200 1400 1600 06 07 08 09 1 11 12 13 14 15 16 17 18 m_T [TeV] $m(N, L^{\pm}) > 910 \text{ GeV}$ m_T [GeV] 68 CMS-PAS-B2G-19-004

Dark Matter (DM)

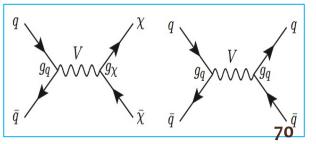
Colliders:


Complete models (SUSY, axions, 2HDM, Higgs portal DM, ...);

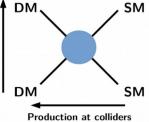
Simplified models (mono-X, mediator, ...);


Direct detection (XENON1T, PandaX, ...)

DM direct search at colliders

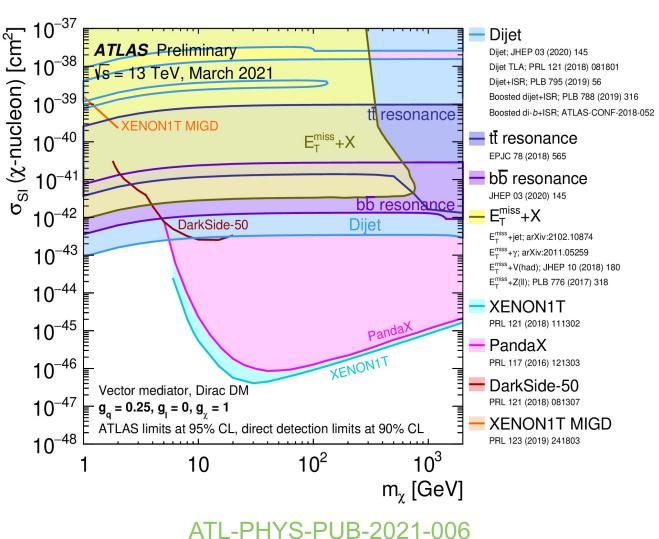

Searches with MET+X or mediator

Searches in the Mono-X final states: Many models constrained up to 2 TeV



Searches also in the Di-Jet final states exclude up to 3.6 TeV for almost whole DM range

Collider vs Direct Detection


Complementarity:

Collider searches:

- Almost independent on DM mass.
- Better performance for low DM masses.

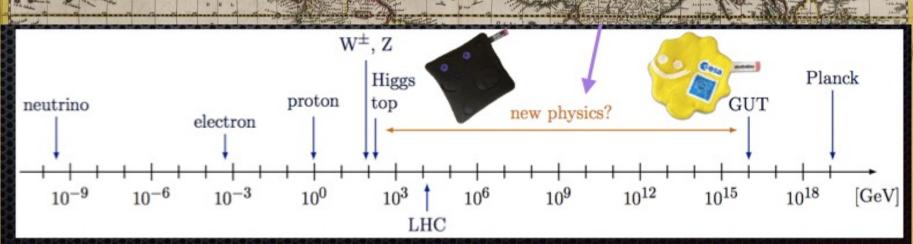
Direct detection searches:

 Better performance for DM masses > 10 GeV.

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2021

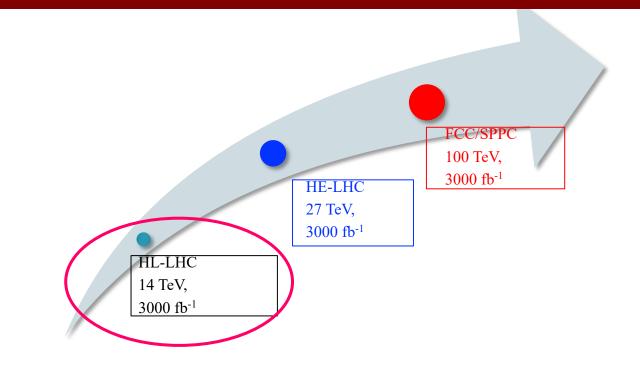
ATLAS Preliminary


 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>ℓ</i> , γ	Jets†	E_{T}^{miss}	∫£ dt[fb	Limit	J	Reference
额外维 粒子	$\begin{array}{c} \textbf{S} \\ \textbf{ADD} \ G_{KK} + g/q \\ \textbf{ADD} \ non-resonant \ \gamma\gamma \\ \textbf{ADD} \ OBH \\ \textbf{ADD} \ BH \ multijet \\ \textbf{RS1} \ G_{KK} \rightarrow \gamma\gamma \\ \textbf{Bulk} \ \textbf{RS} \ G_{KK} \rightarrow WW/ZZ \\ \textbf{Bulk} \ \textbf{RS} \ G_{KK} \rightarrow WW \ \lambda \ \ell \nu q \\ \textbf{Bulk} \ \textbf{RS} \ G_{KK} \rightarrow WW \ \lambda \ \ell \nu q \\ \textbf{S} \ \textbf{S} \ \textbf{S} \ \textbf{K} \ \textbf{K} \ \lambda \ \textbf{K} \ \lambda \ \boldsymbol{K} \ $	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ pq \qquad 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ -2 \ j \\ \geq 3 \ j \\ -2 \ j / 1 \ J \\ \geq 1 \ b, \geq 1 \ J/2 \\ \geq 2 \ b, \geq 3 \ j \end{array}$		139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	Mp Ms Mth Mth GKK mass GKK mass SKK mass	11.2 TeV $n = 2$ 8.6 TeV $n = 3$ HLZ NLO 8.9 TeV $n = 6$ 9.55 TeV $n = 6$ $n = 16$ $M_D = 3$ TeV, rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
W ', Z '	$\begin{array}{c} & \text{SSM } Z' \rightarrow \ell\ell \\ & \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophobic } Z' \rightarrow bb \\ \text{Leptophobic } Z' \rightarrow tt \\ & \text{SSM } W' \rightarrow \ell\nu \\ & \text{SSM } W' \rightarrow \tau\nu \\ & \text{SSM } W' \rightarrow \tau\nu \\ & \text{SSM } W' \rightarrow tb \\ & \text{HVT } W' \rightarrow WZ \rightarrow \ell\nu qq \text{ mod} \\ & \text{HVT } X' \rightarrow ZH \text{ model } B \\ & \text{HVT } W' \rightarrow WH \text{ model } B \\ & \text{LRSM } W_R \rightarrow \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ r \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ r \\ - \\ 0 \ del \ B \\ 1 \ e, \mu \\ 0 \ 2 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 J \\ - \\ 2 j / 1 J \\ 2 j / 1 J \\ 1 - 2 b \\ \geq 1 b, \geq 2 J \\ 1 J \end{array}$	- Yes Yes Yes - Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80		4.4 TeV 4.3 TeV $g_V = 3$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2004.14636 2007.05293 1904.12679
Contac interacti	CI eebs	_ 2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ 1.8 TeV Λ 2.0 TeV Λ 2.57 TeV	$\begin{array}{c c} \hline & \mathbf{21.8 \ TeV} & \eta_{LL} \\ \hline & \mathbf{35.8 \ TeV} & \eta_{LL} \\ \hline & g_* = 1 \\ C_{4t} = 4\pi \end{array} \eta_{LL}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
暗物质	Axial-vector med. (Dirac DM Pseudo-scalar med. (Dirac D Vector med. Z' -2HDM (Dirac Pseudo-scalar med. 2HDM+ Scalar reson. $\phi \rightarrow t\chi$ (Dirac	DM) 0 e, μ, τ, γ c DM) 0 e, μ -a multi-channe	1 – 4 j 1 – 4 j 2 b 1 b, 0-1 J	Yes Yes Yes Yes	139 139 139 139 36.1	m _{med} 2.1 TeV m _{med} 376 GeV 3.1 TeV m _{med} 560 GeV 3.1 TeV m _{med} 560 GeV 3.4 TeV		2102.10874 2102.10874 ATLAS-CONF-2021-006 ATLAS-CONF-2021-036 1812.09743
leptoqu	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \geq 2 e, \mu, \geq 1 \pi 0 e, \mu, \geq 1 \tau$		Yes Yes Yes Yes - Yes	139 139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ" mass 1.2 TeV LQ ³ mass 1.24 TeV LQ ³ mass 1.43 TeV LQ ³ mass 1.26 TeV	$ \begin{array}{c} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_{3}^{u} \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_{3}^{u} \rightarrow t\nu) = 1 \\ \mathcal{B}(\mathrm{LQ}_{3}^{d} \rightarrow t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_{3}^{d} \rightarrow b\nu) = 1 \end{array} $	2006.05872 2006.05872 ATLAS-CONF-2021-008 2004.14060 2101.11582 2101.12527
额外夸	$\begin{array}{c} VLQ TT \rightarrow Zt + X\\ VLQ BB \rightarrow Wt/Zb + X\\ VLQ BB \rightarrow Wt/Zb + X\\ VLQ T_{5/3} T_{5/3} \rightarrow Wt + \\ VLQ T \rightarrow Ht/Zt\\ VLQ Y \rightarrow Wb\\ VLQ B \rightarrow Hb \end{array}$	1 e, μ 1 e, μ	el	Yes Yes Yes	139 36.1 36.1 139 36.1 139	T mass 1.4 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV T mass 1.8 TeV Y mass 1.85 TeV B mass 2.0 TeV	$\begin{array}{l} \mathrm{SU}(2) \text{ doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ \mathrm{SU}(2) \text{ singlet}, \ \kappa_{T} = 0.5 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_{R}(Wb) = 1 \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
重费米	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow p\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q' mass q' mass b' mass 2.6 TeV (* mass y' mass 1.6 TeV		1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
其他	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	2,3,4 e, μ (SS 3 e, μ , τ - $\sqrt{s} = 13 \text{ TeV}$ partial data	³⁾ – – – – – – – – 13 full da	ata	139 36.1 139 36.1 20.3 36.1 34.4	H** mass 350 GeV H** mass 870 GeV H** mass 870 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1	TeV $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $B(H_L^{\pm\pm} \to \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1_{g_D}$, spin 1/2 10 Mass scale [TeV]	ATLAS-CONF-2021-023 1809.11105 2101.11961 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).


The journey into new physics territory has just only begun, and for sure, exciting times are ahead of us! (only ~5% dataset ready)

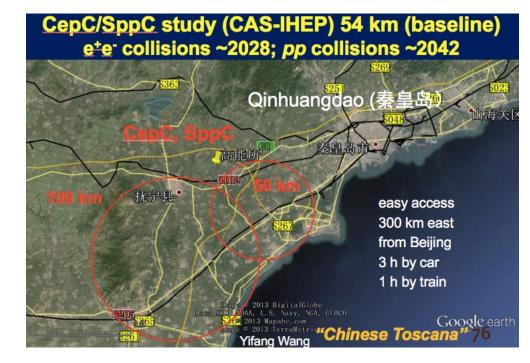
Prospects at Future colliders

Future Proton Colliders

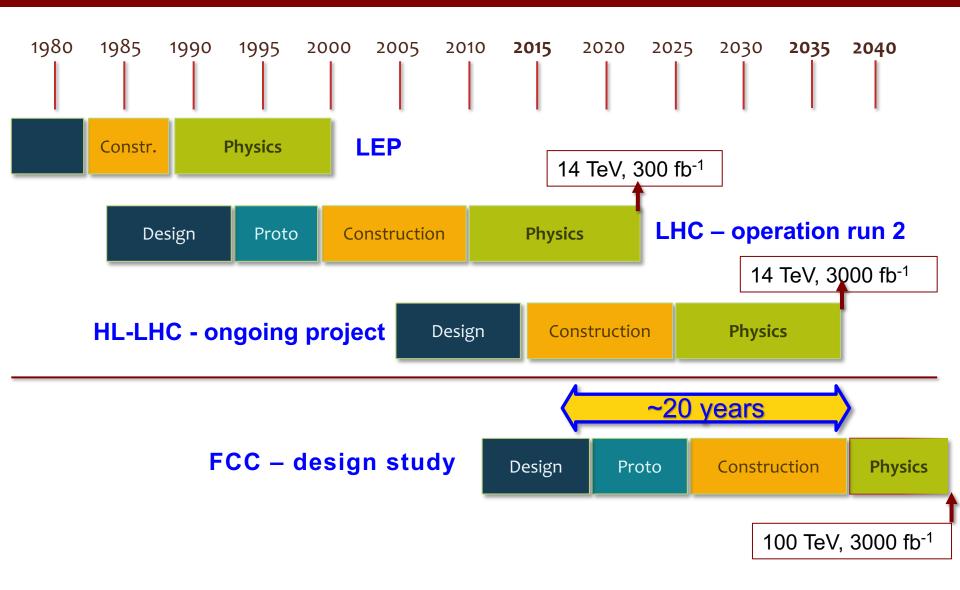
Long term prospects for 2 more collider scenarios have been studied (14, 27, 100 TeV @3000 fb⁻¹)

Future hadron collider projects in a nutshell -- The next discovery machine

HL-LHC: E_{CM} = 14 TeV, 3 ab⁻¹, 2026~2035... (formally approved as *project* by CERN council last week)


Future Circular Collider FCC-hh (CERN):

- E_{CM} ~ 100 TeV in 100 km ring, L ~ 2 × 10³⁵ s⁻¹cm⁻²
- ~16 T magnets, possibly HE-LHC (*E*_{CM} ~ 28 TeV) as intermediate stage
- Huge detectors for muon *p*₇ measurement
- Possible start of physics ~ 2035



SppC (China):

- E_{CM} ~ 71 TeV in 55 km ring,
 L ~ 1 × 10³⁵ s⁻¹cm⁻²
- Requires very high gradient dipole magnets ~ 20 T
- Possible start of physics ~ 2042

CERN Circular Colliders & FCC

ee he

Prospects at HL/HE-LHC: SUSY

ŀ	IL/HE-LHC	SUSY	Searche	S HL-LHC, $\int \mathcal{L} dt = 3ab^{-1}$: 5σ discovery (95% CL exclusion) HE-LHC, $\int \mathcal{L} dt = 15ab^{-1}$: 5σ discovery (95% CL exclusion)	mulation Preliminary $\sqrt{s} = 14, 27 \text{ TeV}$
	Model	e, μ, au, γ	Jets	Mass limit	Section V ³ = 14, 27 10V
	$ ilde{g} ilde{g}, ilde{g} ightarrow q ar{q} ilde{\chi}_1^0$	0	4 jets	\tilde{g} 2.9 (3.2) TeV $m(\tilde{\chi}_1^0)=0$	2.1.1
	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q} ilde{\chi}_{1}^{0}$	0	4 jets	\tilde{g} 5.2 (5.7) TeV m($\tilde{\chi}_1^0$)=0	2.1.1
Gluino	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\mathcal{X}}_1^0$	0	Multiple	\tilde{g} 2.3 (2.5) TeV $m(\tilde{\chi}_1^0)=0$	2.1.3
G	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{c} \tilde{\chi}_1^0$	0	Multiple	\tilde{g} 2.4 (2.6) TeV m($\tilde{\chi}_1^0$)=500 GeV	2.1.3
	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	0	Multiple/2b	ğ 5.5 (5.9) TeV	2.4.2
Stop	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	\tilde{t}_1 1.4 (1.7) TeV m(\tilde{x}_1^0)=0	2.1.2, 2.1.3
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0$	0	Multiple/2b	\tilde{t}_1 0.6 (0.85) TeV $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0, \tilde{\chi}_2^0$	0	Multiple/2b	ž 3.16 (3.65) TeV	2.4.2
	$ ilde{\chi}_1^+ ilde{\chi}_1^-, ilde{\chi}_1^\pm ightarrow W^\pm ilde{\chi}_1^0$	2 e, µ	0-1 jets	$\tilde{\chi}_1^{\pm}$ 0.66 (0.84) TeV m($\tilde{\chi}_1^0$)=0	2.2.1
Chargino, neutralino	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e, µ	0-1 jets	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.92 (1.15) TeV m($\tilde{\chi}_1^0$)=0	2.2.2
harg eutra	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh, Wh $ ightarrow \ell \nu b ar{b}$	1 e, µ	2-3 jets/2b	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 1.08 (1.28) TeV m($\tilde{\chi}_1^0$)=0	2.2.3
σĕ	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 {\rightarrow} W^{\pm} \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i>	-	$\tilde{\chi}_{2}^{\pm}/\tilde{\chi}_{4}^{0}$ 0.9 TeV m $(\tilde{\chi}_{1}^{0})$ =150, 250 GeV	2.2.4
0	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 e, µ	1 jet	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.25 (0.36) TeV m($\tilde{\chi}_1^0$)=15 GeV	2.2.5.1
gsin	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.42 (0.55) TeV m($\tilde{\chi}_1^0$)=15 GeV	2.2.5.1
Higgsino	$ ilde{\chi}^0_2 ilde{\chi}^\pm_1, ilde{\chi}^\pm_1 ilde{\chi}^\mp_1, ilde{\chi}^\pm_1 ilde{\chi}^0_1$	2 μ	1 jet	$\tilde{\chi}_2^0$ 0.21 (0.35) TeV $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 5 \text{GeV}$	2.2.5.2
Wino	$ ilde{\chi}^{\pm}_{2} ilde{\chi}^{0}_{4}$ via same-sign WW	2 <i>e</i> , <i>µ</i>	0	Wino 0.86 (1.08) TeV	2.4.2
	$\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}, \tilde{\tau} {\rightarrow} \tau \tilde{\chi}_1^0$	2 τ	-	\tilde{r} 0.53 (0.73) TeV m($\tilde{\chi}_1^0$)=0	2.3.1
Stau	$ ilde{ au} ilde{ au}$	$2 au, au(e,\mu)$	-	\tilde{r} 0.47 (0.65) TeV $m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.2
S	$\tilde{\tau}\tilde{\tau}$	$2 au, au(e,\mu)$		$\tilde{\tau}$ 0.81 (1.15) TeV $m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.4
					arXiv:1812.07831
			10	⁻¹ Mass scale [TeV]	

In most BSM scenarios, we expect the HL-LHC will increase the present reach in mass and coupling by 20 - 50% (half Run-2 data)

HE-LHC will allow for exclusion of almost all SUSY natural scenarios in case of null observation

EU Strategy- SUSY: ~g

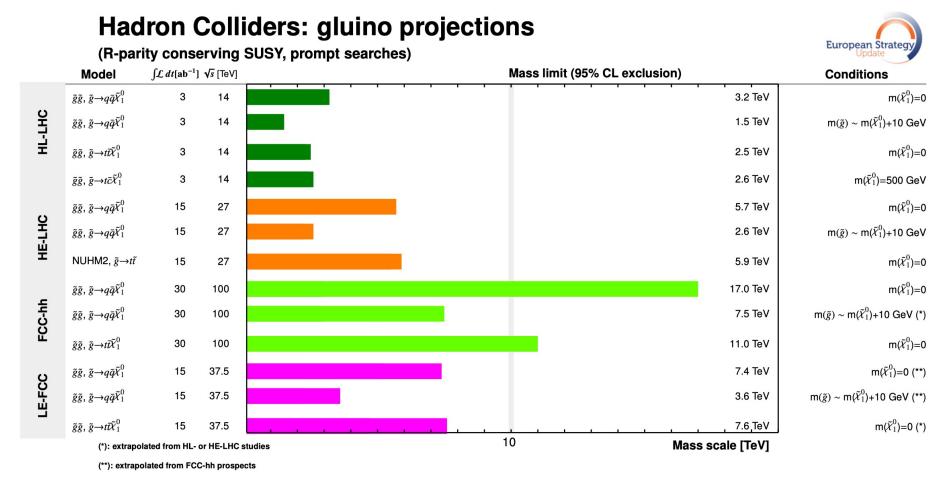


Fig. 8.6: Gluino exclusion reach of different hadron colliders: HL- and HE-LHC [443], and FCC-hh [139,448]. Results for low-energy FCC-hh are obtained with a simple extrapolation.

EU Strategy- SUSY: ~q

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

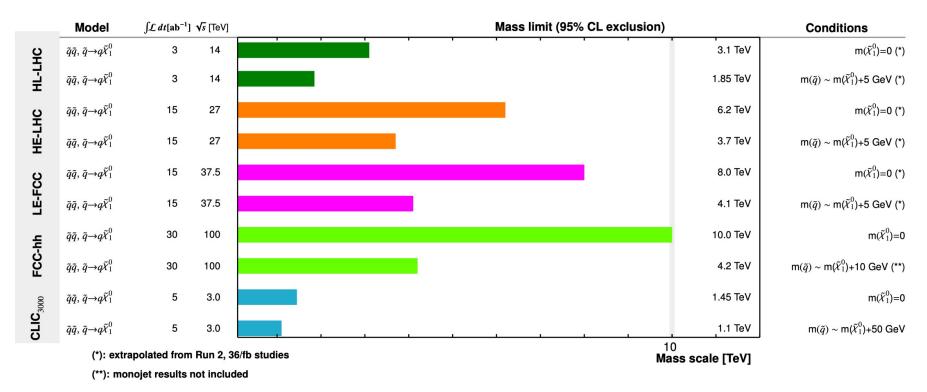
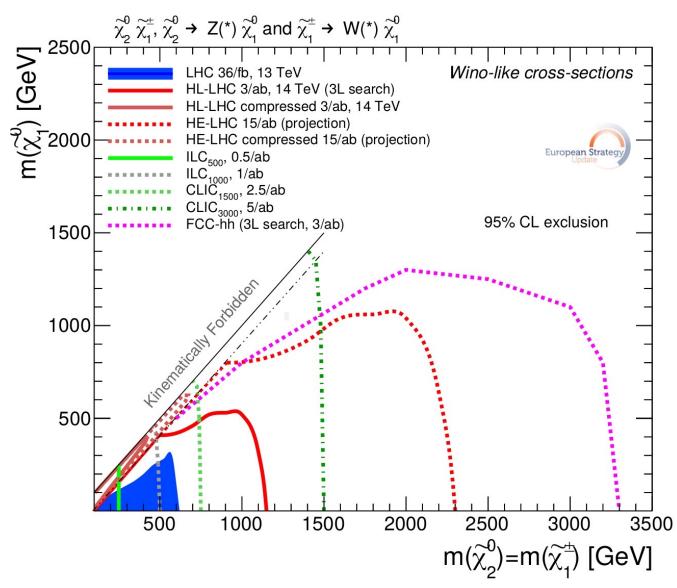


Fig. 8.7: Exclusion reach of different hadron and lepton colliders for first- and second-generation squarks.

EU Strategy - SUSY: ~t

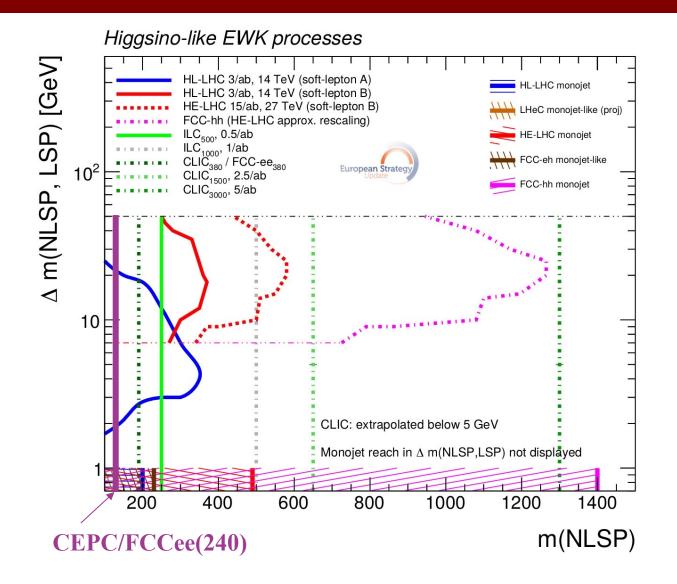
All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)


	Model	$\int \mathcal{L} dt [ab^{-1}]$	¹] √s [TeV]	Mass limit (95% CL exclusion)	Conditions
НL-LHC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0$	3	14	1.7 TeV	$m(\tilde{\chi}_1^0)=0$
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0/3$ body	3	14	0.85 TeV	$\Delta m(ilde{t}_1, ilde{\mathcal{X}}_1^0)$ ~ m(t)
Ŧ	$ ilde{t}_1 ilde{t}_1, ilde{t}_1{ ightarrow}c ilde{\chi}_1^0$ /4 bod	у З	14	0.95 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (*)
0	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0, \tilde{\chi}$	⁰ ₂ 15	27	3.65 TeV	$m(\tilde{\chi}_1^0)=0$
НЕ-СНС	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0/3$ -body	/ 15	27	1.8 TeV	$\Delta {\sf m}(ilde{t}_1, ilde{\chi}_1^0){\sim} {\sf m}({\sf t})$ (*)
Ŧ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0/4$ -bod	y 15	27	2.0 TeV	$\Delta m(ilde{t}_1, ilde{\mathcal{X}}_1^0)$ ~ 5 GeV, monojet (*)
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	15	37.5	4.6 TeV	m($\tilde{\chi}_{1}^{0}$)=0 (**)
LE-FCC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0/3$ -body	/ 15	37.5	4.1 TeV	m $({ ilde \chi}^0_1)$ up to 3.5 TeV (**)
Ë	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0/4$ -bod	y 15	37.5	2.2 TeV	$\Delta m(ilde{t}_1, ilde{\mathcal{X}}_1^0)$ ~ 5 GeV, monojet (**)
00	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$m(\tilde{\chi}_1^0)=0$
CLIC ₁₅₀₀	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
Ö	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	(0.75 - <i>ϵ</i>) TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0)$ ~ 50 GeV
000	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	$m(ilde{\mathcal{X}}_1^0){\sim}350~GeV$
CLIC ₃₀₀₀	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}^0_1$	5	3.0	1.5 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
0	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	(1.5 - <i>ϵ</i>) TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) {\sim}$ 50 GeV
f	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	30	100	10.8 TeV	$m(ilde{\mathcal{X}}_1^0)=0$
FCC-hh	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0/3$ -body	/ 30	100	10.0 TeV	m $(ilde{\mathcal{X}}_1^0)$ up to 4 TeV
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0/4$ -bod	y 30	100	5.0 TeV	$\Delta { m m}(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (*)
			1	0 ⁻¹ 1 Mass scale [TeV]	

(*) indicates projection of existing experimental searches

(**) extrapolated from FCC-hh prospects


 ϵ indicates a possible non-evaluated loss in sensitivity

EU Strategy - SUSY: Wino

ILC 500/CEPC240: discovery in all scenarios up to kinematic limit: $\sqrt{s/2}$

EU Strategy- SUSY: Higgsino

EU Strategy: SUSY-DM

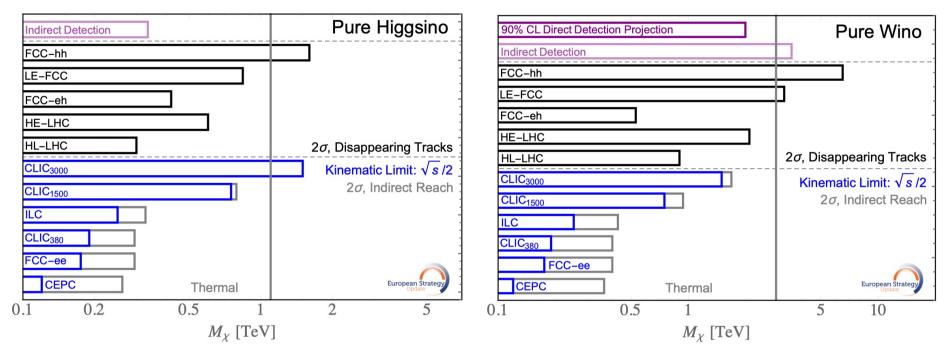


Fig. 8.14: Summary of 2σ sensitivity reach to pure Higgsinos and Winos at future colliders. Current indirect DM detection constraints (which suffer from unknown halo-modelling uncertainties) and projections for future direct DM detection (which suffer from uncertainties on the Wino-nucleon cross section) are also indicated. The vertical line shows the mass corresponding to DM thermal relic.

EU Strategy: DM

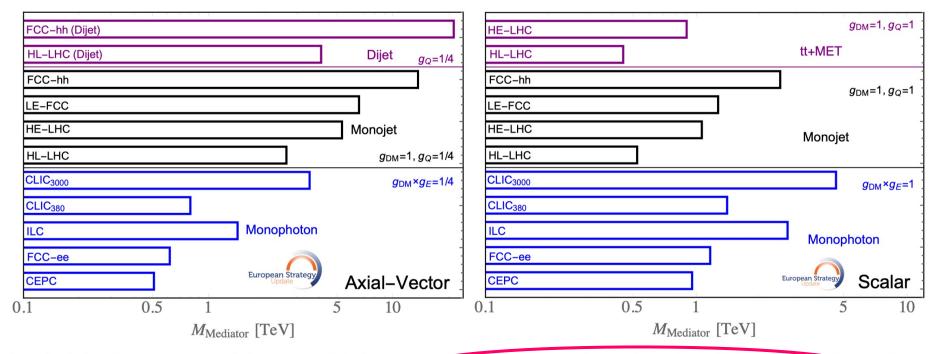
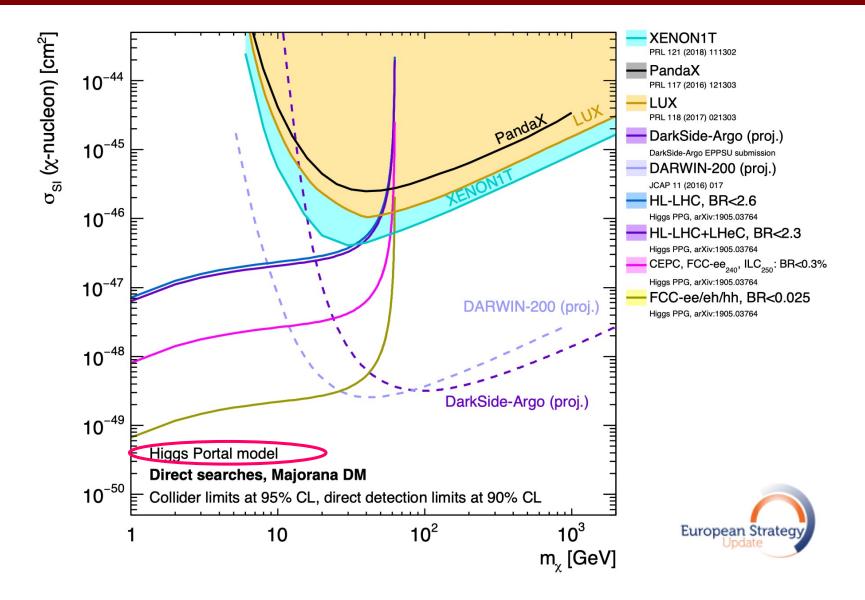
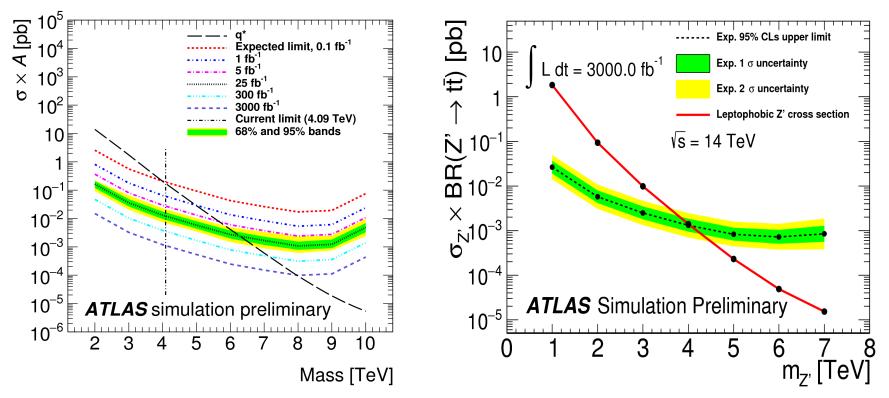



Fig. 8.15: Summary of 2σ sensitivity to axial-vector and scalar simplified models at future colliders for a DM mass of $M_{DM} = 1$ GeV and for the couplings shown in the figure. References and details on the estimates included in these plots can be found in the text.


EU Strategy: DM

Prospects at HL/HE-LHC: Exotics

ATL-PHYS-PUB-2015-004

ATL-PHYS-PUB-2017-002

Exited quark $q^* \rightarrow qg$: di-jet

Eur. Phys. J. Special Topics 228, 1109–1382 (2019)

$Z' \rightarrow ttbar$

6-8 TeV | HL-LHC14 TeV | HE-LHC43 TeV | FCC_hh

	HE-LHC (FCC-hh)			
Process	95%CL limit (TeV)	5σ reach (Tev)	5σ reach (TeV)	
	$15 \; (30) \mathrm{ab}^{-1}$	$1~(2.5){ m ab}^{-1}$	$15~(30){ m ab}^{-1}$	
$Z'_{SSM} \rightarrow e^+e^-/\mu^+\mu^-$	13 (40)	10 (33)	13 (43)	
$Z'_{\rm SSM} \rightarrow \tau^+ \tau^-$	6 (14)	3(12)	6(18)	
$ Z'_{FA} \rightarrow \mu^+ \mu^-$	4(25)	-(10)	2(19)	
$Z'_{TC} \rightarrow t\bar{t}$	10(28)	6(16)	8(23)	
$G_{RS} \rightarrow WW$	8 (28)	5(15)	7(22)	
$Q^* \rightarrow jj$	14 (43)	10 (36)	12 (40)	

 3-4 TeV
 HL-LHC

 6-13 TeV
 HE-LHC

 14-40 TeV
 FCC_hh

Prospects at HL/HE-LHC: Exotics

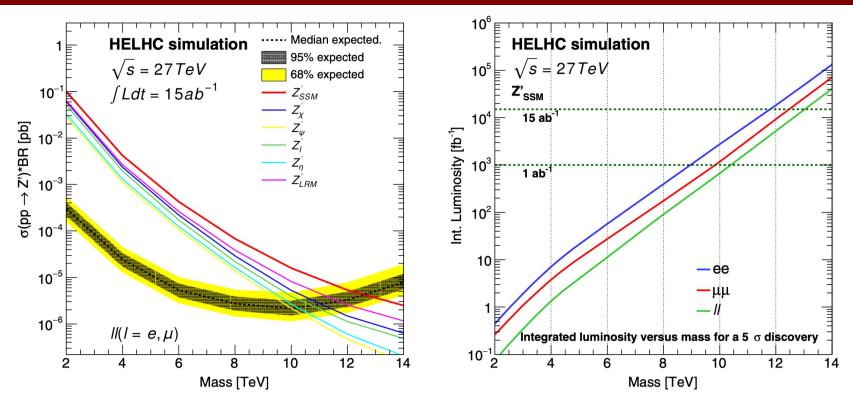


Fig. 1.4. Limit versus mass for the di-lepton channel (left) and luminosity for a 5σ discovery (right) for the ee and $\mu\mu$ combined channels.

	HE-LHC (FCC-hh)			
Process	95%CL limit (TeV)	5σ reach (Tev)	5σ reach (TeV)	
	$15 (30) \mathrm{ab}^{-1}$	$1~(2.5){ m ab}^{-1}$	$15~(30){ m ab}^{-1}$	
$Z'_{SSM} \rightarrow e^+e^-/\mu^+\mu^-$	13 (40)	10(33)	13 (43)	
$Z'_{SSM} \rightarrow \tau^+ \tau^-$	6 (14)	3(12)	6(18)	
$ m Z_{FA}^\prime \! ightarrow \! \mu^+ \mu^-$	4 (25)	- (10)	2 (19)	
${\rm Z}_{ m TC}^{\prime} { m m m m m t} { m t} { m ar t}$	10 (28)	6(16)	8 (23)	
$G_{RS} \rightarrow WW$	8 (28)	5(15)	7(22)	
$Q^* \rightarrow jj$	14(43)	10(36)	12(40)	

Eur. Phys. J. Special Topics 228, 1109–1382 (2019)

LHC is discovery machines, new physics may come at any time, stay tuned!