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EFT in a nutshell

Nature has many scales.

Science progresses as we can treat one scale at a time.

Coarse-graining over short-distance (high-energy) scales leads
to an effective field theory (EFT) at long distances (low
energies).

Even if we do not know the detail of the full theory, we can
parameterize our ignorance in an EFT.
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Some typical EFTs:

Why is the sky blue?
Rayleigh scattering cross section σ ∝ E4

γ ⇒ blue light dominant

Fermi’s theory of the weak interactions

Chiral Lagrangian in QCD

L =
f 2

4
tr
[
(∂µΣ†)(∂µΣ)

]
+ · · ·

Techincolor and composite Higgs theories

Dimension 5 operator giving neutrino masses

L ⊃
1
Λ

(LH)(LH)

Dimension 6 operator leading to proton decay

L ⊃
1

Λ2
QQQL
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Some of my publications related to EFTs:

Electroweak chiral Lagrangian:
Phys.Rev.D 77 (2008) 055003
Eur.Phys.J.C 67 (2010) 51-56

Dark matter (DM) effective field theory:
Nucl.Phys.B 854 (2012) 350-374 [90 citations]
Nucl.Phys.B 860 (2012) 115-151 [71 citations]

Composite Higgs & DM production mechanism:
Phys.Rev.Lett. 125 (2020) 2, 021801
JHEP 01 (2019) 130
Phys.Rev.D 102 (2020) 7, 075018

Minimal and simplified DM:
Phys.Rev.D 92 (2015) 11, 115004
Nucl.Phys.B 921 (2017) 181-210
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Chiral symmetry in QCD

Consider the QCD Lagrangian, keeping only the three lightest
quarks, u, d and s:

L =
3∑

i=1

(q̄i i /Dqi −mi q̄iqi)−
1
4

Ga
µνGaµν

where Dµ = ∂µ − igT aAa
µ is the covariant derivative, T a = λa/2

is SU(3) generators in the 3 representation.

Note that the kinetic term can be written as

3∑
i=1

q̄i i /Dqi =
3∑

i=1

(q̄Li i /DqLi + q̄Ri i /DqRi)

which respects a U(3)L × U(3)R symmetry.
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One combination of these transformations, the U(1)A
transformation where qi → eiαγ5qi is in fact not a symmetry of
the quantum theory, due to anomalies.

This leaves us with a U(1)V × SU(3)L × SU(3)R symmetry.

The U(1)V is just baryon number, under which both left- and
right-handed quarks of all flavors pick up a common phase.

The remaining SU(3)L × SU(3)R symmetry is called chiral
symmetry.
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However, SU(3)L × SU(3)R is not an exact symmetry of QCD.

The mass term couples left- and right-handed quarks, so it is
not invariant under the chiral symmetry.

∑
i

mi q̄iqi =
∑
i,j

q̄RiMijqLj + h.c.

M =

mu
md

ms


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If the mass matrix M were a dynamical field, transforming
under SU(3)L × SU(3)R as

M → RML†

then the Lagrangian would be chirally invariant.

Chiral symmetry may be spontaneously broken due to a field M.

This is called treating M as a spurion.
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The chiral symmetry is broken to the extent that M 6= RML†.

Since mu and md are much smaller than ms, SU(2)L × SU(2)R
is not broken as badly as SU(3)L × SU(3)R.

♣ If all three quark masses were equal but nonzero, then QCD
would respect an SU(3)V ⊂ SU(3)L × SU(3)R symmetry,
where one sets L = R.

This is the SU(3) symmetry of Gell-Mann.

♣ Since md −mu is small, SU(2)V ⊂ SU(3)V , where L = R
and they act nontrivially only on the u and d quarks, is quite a
good symmetry.

It is known as isospin symmetry.
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Independent vectorlike phase rotations of the three flavors of
quarks

qi → eiαi qi

are exact symmetries.

These three U(1) symmetries are linear combinations of the
baryon number B, the 3rd component of the isospin symmetry
I3, and the hypercharge Y .

The latter two are violated by the weak interaction, but not by
the strong or electromagnetic forces.
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This is not the whole story.

The QCD vacuum spontaneously breaks the chiral
SU(3)L × SU(3)R symmetry down to Gell-Mann’s SU(3)V via
the quark condensate:

〈0|q̄RjqLi |0〉 = Λ3δij

which transforms as a (3, 3̄) under SU(3)L × SU(3)R.

Here Λ has a dimension of mass.
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If one redefines the quark fields by a chiral transformation, then
the Kronecker δ-function above gets replaced by a general
SU(3) matrix Σ = LR†,

〈0|q̄RjqLi |0〉 → Lim〈0|q̄RnqLm|0〉R†nj

= LimΛ3δmnR†nj

= Λ3(LR†)ij

≡ Λ3Σij

If L = R (a Gell-Mann’s SU(3)V transformation), then Σij = δij
which shows that the condensate leaves unbroken the SU(3)V
symmetry.

For L 6= R, Σij represents a different vacuum from δij .

If it wasn’t for the explicit breaking of SU(3)L × SU(3)R by
quark masses in the QCD Lagrangian, these two different
vacua would be degenerate.
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By Goldstone’s theorem, there would be eight exact Goldstone
bosons — one for each of the eight broken generators.

We parameterize these Goldstone boson excitations by
replacing

Σ→ Σ(x) ≡ exp
[

2i
f
π(x)

]
π(x) = T aπa(x)

where T a are the SU(3) generators (a = 1, . . . ,8) in the
defining representation normalized to tr(T aT b) = (1/2)δab.

f is a parameter with dimension of mass which we will relate to
the pion decay constant fπ, and πa(x) are eight mesons
transforming as an octet under SU(3)V .

The interaction of these mesons are represented by the chiral
Lagrangian.
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The transformation of Σ(x) under SU(3)L × SU(3)R is given by

Σ(x)→ LΣ(x)R†

The chiral Lagrangian is required to be invariant under this
transformation.

Note that SU(3)L × SU(3)R is not exact.

It is broken by nonzero quark masses and by the electric
charges of the quarks.

We will have to incorporate those effects.
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Quantum numbers of the meson octet

It is useful to use the basis for SU(3) generators T a = (1/2)λa,
where λa are Gell-Mann matrices:

λi =

(
σi

0

)
(i = 1,2,3)

λ4 =

 1
0

1

 , λ5 =

 −i
0

i

 ,

λ6 =

(
0

σ1

)
, λ7 =

(
0

σ2

)
,

λ8 =
1√
3

1
1
−2



15 / 96



For N = 2, the pion matrix is

φ ≡
3∑

a=1

φaσ
a = φ1

(
1

1

)
+ φ2

(
−i

i

)
+ φ3

(
1
−1

)

=

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
≡
(

π0
√

2π+
√

2π− −π0

)
where we have defined

π0 ≡ φ3

π+ ≡ 1√
2

(φ1 − iφ2)

⇔ π− ≡ (π+)† =
1√
2

(φ1 + iφ2)
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Why does π+ ≡ 1√
2

(φ1 − iφ2) have the electric charge +1?

♣ Method 1: By comparing

φij ∝ 〈q̄RjqLi〉 =

(
〈ūRuL〉 〈d̄RuL〉
〈ūRdL〉 〈d̄RdL〉

)
φij =

(
π0

√
2π+

√
2π− −π0

)
we get π+ ∼ 〈d̄u〉. Then, from the electric charges of the
quarks

Q(u) =
2
3
, Q(d) = −1

3

we see that the electric charge of π+ is

Q(π+) = Q(〈d̄u〉) = −
(
−1

3

)
+

2
3

= +1
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♣ Method 2: The generator of the electric charge is

Q = T3L + Y , Y = T3R +
B
2

⇔ Q = T3L + T3R +
B
2

Under U(1)em, the left- and right-handed quarks transform as

qL → ei(T3L+ B
2 )θqL, qR → ei(T3R+ B

2 )θqR

Thus, φ ∼ 〈qLq̄R〉 transforms as

φ → ei(σ3
2 + B

2 )θ φe−i(σ3
2 + B

2 )θ = ei σ3
2 θ φe−i σ3

2 θ

=

(
ei 1

2 θ

e−i 1
2 θ

)(
∗ ∗
∗ ∗

)(
e−i 1

2 θ

ei 1
2 θ

)

=

(
∗ eiθ∗

e−iθ∗ ∗

)
that is, the upper-right element of φ has electric charge of +1.
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For N = 3, the meson matrix is

φ =
8∑

a=1

φaλ
a =

φ3 + φ8√
3

φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + φ8√
3

φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8



=

π
0 + η√

3

√
2π+

√
2K +

√
2π− −π0 + η√

3

√
2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


where we have defined

π0 ≡ φ3, η ≡ φ8

π+ ≡ 1√
2

(φ1 − iφ2) ⇒ π− ≡ (π+)† =
1√
2

(φ1 + iφ2)

K + ≡ 1√
2

(φ4 − iφ5) ⇒ K− ≡ (K +)† =
1√
2

(φ4 + iφ5)

K 0 ≡ 1√
2

(φ6 − iφ7) ⇒ K̄ 0 ≡ (K 0)† =
1√
2

(φ6 + iφ7)
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Why do π0, η, π+,K +,K 0 have the assigned electric charges?

♣ The transformation of

φ =
8∑

a=1

φaλ
a =

π
0 + η√

3

√
2π+

√
2K +

√
2π− −π0 + η√

3

√
2K 0

√
2K−

√
2K̄ 0 − 2√

3
η


under U(1)em is

φ →

ei 1
2 θ

e−i 1
2 θ

e−i 1
2 θ


∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


e−i 1

2 θ

ei 1
2 θ

ei 1
2 θ


=

 ∗ eiθ∗ eiθ∗
e−iθ∗ ∗ ∗
e−iθ∗ ∗ ∗


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The meson matrix can be written in the two conventions as

π(x) ≡
8∑

a=1

φa
λa

2
=

1
2
φ(x) ⇔ 2π(x) = φ(x)

As a result,

Σ(x) ≡ exp
[

2i
f
π(x)

]
= exp

[
i
f
φ(x)

]
Under an SU(3)V transformation L = R ≡ V ,

Σ→ V ΣV †

= exp
[

2i
f

Vπ(x)V †
]

= exp
[

i
f
Vφ(x)V †

]
⇒ π(x)→ Vπ(x)V † or φ(x)→ Vφ(x)V †
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It is easy to check that

tr
[
π2(x)

]
=

1
4

tr
[
φ2(x)

]
=
∑
a,b

φaφbtr
(
λa

2
λb

2

)
=
∑
a,b

φaφb
1
2
δab =

1
2

∑
a

φ2
a

=
1
2

(π0)2 +
1
2
η2 + π+π− + K +K− + K 0K̄ 0

which is a manifestly SU(3)V invariant operator.

Proof for the last equality is simple: π0 ≡ φ3, η ≡ φ8,

π+ ≡ 1√
2

(φ1 − iφ2) ⇒ π+π− =
1
2

(φ2
1 + φ2

2)

K + ≡ 1√
2

(φ4 − iφ5) ⇒ K +K− =
1
2

(φ2
4 + φ2

5)

K 0 ≡ 1√
2

(φ6 − iφ7) ⇒ K 0K̄ 0 =
1
2

(φ2
6 + φ2

7)
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Proof for

tr
[
π2(x)

]
=

1
2

(π0)2 +
1
2
η2 + π+π− + K +K− + K 0K̄ 0

by Mathematica:
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Two basic principles of chiral Lagrangian

To write down the chiral Lagrangian, we are guided by two
basic principles of effective field theory:

♣1. The chiral Lagrangian must be invariant under the chiral
symmetry

Σ→ LΣR†

We can incorporate symmetry breaking effects by including the
quark mass matrix M, requiring that the chiral Lagrangian be
invariant under the chiral symmetry if M were to transform as

M → RML†
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♣2. The other principle is that the chiral Lagrangian be an
expansion of local operators suppressed by powers of
momenta or meson masses divided by a cutoff Λ.

The cutoff is set by the scale of physics we are ignoring, such
as the ρ,K ∗, ω and η′ mesons (with masses mρ = 770 MeV,
mK∗ = 892 MeV, mω = 782 MeV and mη′ = 958 MeV).

In practice, the cutoff seems to be at Λ ' 1 GeV in many
processes. This cutoff is to be compared with

mπ± = 140 MeV,
mK± = 494 MeV,
mη = 548 MeV

For purely mesonic processes, meson masses always appear
squared, which helps.
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The chiral perturbation works far better for pions than kaons or
the η.

This is a reflection of the fact that SU(2)L × SU(2)R is a much
better symmetry of QCD than SU(3)L × SU(3)R.
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The leading term

The lowest dimension chirally symmetric operator is

L0 =
f 2

4
tr
[
(∂µΣ†)(∂µΣ)

]
= tr [(∂µπ)(∂µπ)] +

1
3f 2 tr ([∂µπ, π][∂µπ, π]) +O

(
1
f 3

)
The f 2/4 prefactor is fixed by requiring that the mesons have
canonically normalized kinetic terms:

tr [(∂µπ)(∂µπ)] =
1
2

(∂π0)2 +
1
2

(∂η)2 + (∂π+)(∂π−)

+ (∂K +)(∂K−) + (∂K 0)(∂K̄ 0)
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Proof for
f 2

4
tr
[
(∂µΣ†)(∂µΣ)

]
⊃ 1

3f 2 tr ([∂µπ, π][∂µπ, π])

Σ(x) ≡ exp
[

2i
f
π(x)

]
=
∞∑

n=0

1
n!

(
2i
f
π

)n

= 1 +
2i
f
π(x) +

1
2!

(
2i
f
π

)2

+
1
3!

(
2i
f
π

)3

+ · · ·

= 1 +
2i
f
π(x)− 2

f 2π
2(x)− 4i

3f 3π
3(x) + · · ·

Σ†(x) = exp
[
−2i

f
π(x)

]
= 1− 2i

f
π(x)− 2

f 2π
2(x) +

4i
3f 3π

3(x) + · · ·

⇒ ∂µΣ =
2i
f

(∂µπ)− 2
f 2 (∂µπ

2)− 4i
3f 3 (∂µπ

3) + · · ·

∂µΣ† = −2i
f

(∂µπ)− 2
f 2 (∂µπ

2) +
4i

3f 3 (∂µπ
3) + · · ·
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⇒ tr
[
(∂Σ†)(∂Σ)

]
= tr

{[
2i
f

(∂π)− 2
f 2 (∂π2)− 4i

3f 3 (∂π3) + · · ·
]

×
[
−2i

f
(∂π)− 2

f 2 (∂π2) +
4i

3f 3 (∂π3) + · · ·
]}

=
4
f 2 tr [(∂π)(∂π)] +

4
f 4 tr

[
(∂π2)(∂π2)

]
−2× 8

3f 4 tr
[
(∂π)(∂π3)

]
4
f 4 tr

[
(∂π2)(∂π2)

]
=

4
f 4 tr

{
[π(∂π) + (∂π)π][π(∂π) + (∂π)π]

}
=

8
f 4

{
tr [π(∂π)π(∂π)] + tr

[
π2(∂π)2

]}

− 16
3f 4 tr

[
(∂π)(∂π3)

]
= − 16

3f 4 tr
{

(∂π)

[
(∂π)π2 + π(∂π)π + π2(∂π)

]}
= − 16

3f 4

{
2tr
[
(∂π)2π2

]
+ tr [(∂π)π(∂π)π]

}
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⇒ tr
[
(∂Σ†)(∂Σ)

]
⊃ 4

f 4 tr
[
(∂π2)(∂π2)

]
− 16

3f 4 tr
[
(∂π)(∂π3)

]
=

1
f 4

{(
8− 16

3

)
tr [(∂π)π(∂π)π]

+

(
8− 32

3

)
tr
[
(∂π)2π2

]}
=

8
3f 4

{
tr [(∂π)π(∂π)π]− tr

[
(∂π)2π2

]}

⇒ f 2

4
tr
[
(∂Σ†)(∂Σ)

]
⊃ 2

3f 2

{
tr [(∂π)π(∂π)π]− tr

[
(∂π)2π2

]}
On the other hand,
1

3f 2 tr ([∂µπ, π][∂µπ, π]) =
1

3f 2 tr
{

[(∂π)π − π(∂π)][(∂π)π − π(∂π)]

}
=

2
3f 2

{
tr [(∂π)π(∂π)π]− tr

[
(∂π)2π2

]} √
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Pion decay constant

From the above Lagrangian, it would seem that the only way to
determine f is by looking at ππ scattering.

However there is a better way: by looking at the charged pion
decay π → µν̄µ.

This occurs through the “semi-leptonic” weak interaction

L ⊃ GF√
2

Vud [ūγµ(1− γ5)d ][µ̄γµ(1− γ5)νµ] + h.c.

The matrix element of this operator sandwiched between |µν̄µ〉
and 〈π| factorizes, and the leptonic part is perturbative.
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We are left with the nonperturbative part

〈0|ūγµ(1− γ5)d |π−(p)〉 ≡ i
√

2fπpµ

The pion decay constant fπ is determined from the charged
pion lifetime to be

fπ = 92.4± 0.25 MeV

Even if QCD is nonperturbative, we can easily match this
charged current operator onto an operator in the chiral
Lagrangian. This is because

ūγµ
(

1− γ5

2

)
d = j1µL + ij2µL ⇔ ūγµ(1− γ5)d = 2(j1µL + ij2µL )

where jaµL are the eight SU(3)L currents

jaµL ≡ q̄γµ
(

1− γ5

2

)
T aq
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Proof for ūγµ
(

1− γ5

2

)
d = j1µL + ij2µL :

T1 =
λ1

2
=

1
2

( 1
1

)
0

 , T2 =
λ2

2
=

1
2

( −i
i

)
0


⇒ T1 + iT2 =

( 1
0

)
0


⇒ j1µL + ij2µL = q̄Lγ

µ(T1 + iT2)qL = ūLγ
µdL
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Using Noether’s theorem, we can compute the left-handed
currents from the effective Lagrangian L0 :

L0 =
f 2

4
tr
[
(∂Σ†)(∂Σ)

]
=

f 2

4
(∂Σ†ij)(∂Σji)

⇒ ∂L0

∂(∂µΣij)
=

f 2

4
(∂µΣ†ji),

∂L0

∂(∂µΣ†ij)
=

f 2

4
(∂µΣji)

⇒ Noether’s current is

jµ ∝ ∂L0

∂(∂µΣij)
δΣij + δΣ†ij

∂L0

∂(∂µΣ†ij)

=
f 2

4
(∂µΣ†ji)δΣij + δΣ†ij

f 2

4
(∂µΣji)

=
f 2

4
tr
[
(∂µΣ†)δΣ + (δΣ†)(∂µΣ)

]
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Under SU(3)L transformations,

Σ→ LΣ = eiT aθa
Σ ' (1 + iT aθa)Σ ⇒ δΣ = iT aθaΣ

Σ† → Σ†L† = Σ†e−iT aθa ' Σ†(1− iT aθa) ⇒ δΣ† = −iΣ†T aθa

⇒ Noether’s current for SU(3)L is

jµL ∝
f 2

4
tr
[
(∂µΣ†)δΣ + (δΣ†)(∂µΣ)

]
=

f 2

4
tr
[
(∂µΣ†)iT aθaΣ−iΣ†T aθa(∂µΣ)

]
=

f 2

4
iθa tr

[
(∂µΣ†)T aΣ− Σ†T a(∂µΣ)

]
=

f 2

4
iθa tr

[
−Σ†(∂µΣ)Σ†T aΣ− Σ†T a(∂µΣ)

]
=

f 2

4
iθa · (−2) tr

[
Σ†T a(∂µΣ)

]
= −i

f 2

2
θa tr

[
Σ†T a(∂µΣ)

]
≡ θajaµL
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Thus, the eight Noether’s currents for SU(3)L are

jaµL = −i
f 2

2
tr
[
Σ†T a(∂µΣ)

]
(a = 1, · · · ,8)

Proof for the relation ∂µΣ† = −Σ†(∂µΣ)Σ† :

Σ†Σ = 1 ⇒ 0 = ∂µ(Σ†Σ) = (∂µΣ†)Σ + Σ†(∂µΣ)

⇒ ∂µΣ† = −Σ†(∂µΣ)Σ†
√
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Σ = exp
[

2i
f
π(x)

]
= 1 +

2i
f
π(x) +O

(
1
f 2π

2
)

⇒ ∂µΣ =
2i
f
∂µπ +O

(
1
f 2π

2
)

Σ† = exp
[
−2i

f
π(x)

]
= 1− 2i

f
π(x) +O

(
1
f 2π

2
)

⇒ jaµL = −i
f 2

2
tr
[
Σ†T a(∂µΣ)

]
= −i

f 2

2
tr
[(

1− 2i
f
π(x) +O

(
1
f 2π

2
))

T a
(

2i
f
∂µπ +O

(
1
f 2π

2
))]

= −i
f 2

2
·
[

2i
f

tr
[
T a(∂µπ)

]
+O

(
1
f 2π

2
)]

= f tr
[
T a(∂µπ)

]
+O

(
1
f 0π

2
)
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That is, we get the Noether’s currents for SU(3)L as

jaµL = f tr
[
T a(∂µπ)

]
+O

(
1
f 0π

2
)

(a = 1, · · · ,8)

In particular,

j1µL + ij2µL = f tr
[
(T 1 + iT 2)(∂µπ)

]
+O

(
1
f 0π

2
)

Let us figure out the trace:

tr
[
(T 1 + iT 2)(∂µπ)

]
= tr


0 1

0 0
0

 ∂µ
1
2

π
0 + η√

3

√
2π+

√
2K +

√
2π− −π0 + η√

3

√
2K 0

√
2K−

√
2K̄ 0 − 2√

3
η




=
1√
2
∂µπ−
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Thus,

j1µL + ij2µL =
f√
2
∂µπ− +O

(
1
f 0π

2
)

⇒ ūγµ(1− γ5)d = 2(j1µL + ij2µL ) =
√

2f∂µπ− +O
(

1
f 0π

2
)

Comparing this equation with

〈0|ūγµ(1− γ5)d |π−(p)〉 ≡ i
√

2fπpµ

we see that to this order,

f = fπ = 93 MeV

For semileptonic decays, the weak operator can be factorized
into a leptonic matrix element and a hadronic matrix element of
an SU(3)L symmetry current.

In this case, we can match quark operators with operators in
the chiral Lagrangian.
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We can also match quark operators with pion operators by
dimensional analysis:

Σij ∝ 〈qi q̄j〉 =

〈u
d
s

(ū d̄ s̄
)〉

=

〈ūu〉 〈d̄u〉 〈s̄u〉
〈ūd〉 〈d̄d〉 〈s̄d〉
〈ūs〉 〈d̄s〉 〈s̄s〉


Σ = exp

[
2i
f
π(x)

]
= 1 +

2i
f
π(x) +O

(
1
f 2π

2
)

= 1 +
2i
f

 ∗ ∗ ∗
π−√

2
∗ ∗

∗ ∗ ∗

+O
(

1
f 2π

2
)

Comparing the above equations, we can match ū(· · · )d to π−.

The other factors or derivatives will be fixed by Lorentz
invariance and dimensional analysis.
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Lorentz index: γµ → ∂µ ⇒ ūγµ(1− γ5)d ∝ ∂µπ−

On the other hand,

[u] = [d ] =
3
2
⇒ [ūγµ(1− γ5)d ] = 3

[∂µ] = [π−] = 1 ⇒
[
∂µπ−

]
= 2

Thus, by dimensional analysis we have

ūγµ(1− γ5)d ∼ f∂µπ− with [f ] = 1
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Shift symmetry of pions

Up to now, we have only discussed operators in the chiral
Lagrangian which are invariant.

These are derivative interaction operators.

Recall that without explicit chiral symmetry breaking, there
would be a shift symmetry of the pion fields.

The SU(3)L symmetry Σ→ eiT aθa
Σ corresponds to shift the

fields as
πa → πa +

f
2
θa +O

(
(1/f )0

)
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L = eiT aθa
, Σ = e

2i
f π(x) = e

2i
f T aπa(x)

⇒ Σ→ LΣ = eiT aθa
e

2i
f T bπb

Using Baker-Compbell-Hausdorff formula:

eX eY = eZ

Z = X + Y +
1
2

[X ,Y ] +
1

12
[X , [X ,Y ]] +

1
12

[Y , [Y ,X ]] + · · ·

with X = iT aθa, Y = 2i
f T bπb, we obtain

Z = iT aθa +
2i
f

T aπa +
1
2

[
iT aθa,

2i
f

T bπb
]

+ · · ·

=
2i
f

T a
(
πa +

f
2
θa
)

+O
(
θa

f

)
=

2i
f

T a
[
πa +

f
2
θa +O

(
(1/f )0θa

)]
⇒ πa → πa +

f
2
θa +O

(
(1/f )0θa

)
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That is, derivative interactions are a result of the shift symmetry.

In the literature, this is called a nonlinearly realized symmetry,
i.e., a spontaneously broken symmetry.

A theory of massless particles with nontrivial interactions at
zero momentum transfer (such as QCD, in which gluons are
massless) would suffer severe infrared divergences.

So if the interactions had not been purely derivative, the theory
would either not make sense, or become nonperturbative like
QCD.

However, when explicit chiral symmetry breaking is included,
not all vacua are equivalent, the massless Goldstone bosons
become massive “pseudo-Goldstone bosons” (PGBs), and
acquire nonderivative interactions.
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Explicit symmetry breaking: quark masses

To describe the meson masses, we need to include the quark
mass matrix M = diag(mu, md , ms) in the chiral Lagrangian.

To be dimensionless, each power of M will be accompanied by
1/Λ.

The leading operator involving quark masses is given by

LM = Λ2f 2
[

c
2

tr
(

1
Λ

MΣ

)
+ h.c.

]
=

f 2

2
cΛ tr(MΣ + h.c.) =

f 2

2
cΛ tr[M(Σ + Σ†)]

where c is an unknown dimensionless coefficient. The red part
is dimension 4, while the blue part is dimensionless.

45 / 96



Let us define Λ̃ ≡ cΛ = O(Λ), then this term becomes

LM =
f 2

2
Λ̃ tr(MΣ + h.c.) =

f 2

2
Λ̃ tr[M(Σ + Σ†)]

Expanding LM to second order in π(x), we get

LM ' −m2
π+π+π−−m2

K +K +K−−m2
K 0K 0K̄ 0−1

2
(
π0 η

)
M2

0

(
π0

η

)
with

m2
π+ = Λ̃(mu + md ), m2

K + = Λ̃(mu + ms), m2
K 0 = Λ̃(md + ms)

M2
0 = Λ̃

(
mu + md

mu−md√
3

mu−md√
3

1
3(mu + md + 4ms)

)
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Derivation of the meson masses from LM = f 2

2 Λ̃ tr[M(Σ + Σ†)] :

47 / 96



48 / 96



49 / 96



Note that (i) the squares of the meson masses are proportional
to quark masses;

(ii) π0-η mixing is isospin breaking and proportional to
(mu −md );

(iii) expanding in powers of (mu −md ), m2
η and m2

π0 are given by
the diagonal entries of M2

0 , up to corrections of O
(
(mu −md )2);

(iv) we cannot directly relate quark and meson masses
because of the unknown coefficient Λ̃.

Ignoring isospin breaking due to electromagnetism and the
difference mu 6= md , the meson masses obey the Gell-Mann
Okuba formula:

3m2
η + m2

π = 4m2
K

50 / 96



Derivation of the Gell-Mann Okuba formula:
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Explicit symmetry breaking: electromagnetism

To include electromagnetism into the chiral Lagrangian, we first
go back to QCD and ask what currents out of jaµL and jaµR couple
to the photon.

This is easy: the electromagnetic current coupling to the photon
is given by

jµem = eq̄Lγ
µQLqL + eq̄Rγ

µQRqR

with QL = QR = diag
(

2
3
, − 1

3
, − 1

3

)
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The U(1)em gauge symmetry determines the covariant
derivative of Σ to be

DµΣ = ∂µΣ− ieAµ(QLΣ− ΣQR)

since Σ→ LΣR† under SU(3)L × SU(3)R, and
U(1)em ⊂ SU(3)V ⊂ SU(3)L × SU(3)R.

When we set the Σ field to its VEV, Σ = 1, the photon term
drops out of the covariant derivative, which is to say that the
vacuum does not break the U(1)em symmetry.

QL,R in general do not commute with L and R, so terms
involving DµΣ, for example tr[(DµΣ†)(DµΣ)], explicitly break the
SU(3)L × SU(3)R chiral symmetry.
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However, we can promote QL,R to be spurions: we define their
chiral transformations as

QL → LQLL†, QR → RQRR†

such that
DµΣ→ L(DµΣ)R†

If we want to compute the electromagnetic contribution to the
π+–π0 mass splitting to order α, we naturally look at the two
1-loop diagrams we encounter in scalar QED.
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These two 1-loop diagrams are apparently quadratically
divergent, which means they need a counterterm which would
contribute to the pion mass squared.

This counterterm should be hermitian, so it will contain the
trace of Σ and Σ†.

This counterterm should be proportional to e2, and thus it
will be proportional to (eQL)2, (eQR)2 or eQLeQR.

This counterterm should be chirally symmetric when we
regard QL,R as spurions:

QL → LQLL†, QR → RQRR†
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The only possible counterterm satisfying these three
requirements is of the form

Lα = ξf 4e2tr
(

QLΣQRΣ†
)

where the coefficient ξ = O(1) needs to be fit to data or
computed using lattice QCD.
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If we use the MS scheme in Landau gauge, then the 1-loop
diagrams vanish in the low energy limit, and we are left only
with the direct contribution from the counterterm.

Expanding it to second order in meson fields we get

Lα = −ξf 4e2 2
f 2 tr (QL[π, [π,QR]])

= −2ξe2f 2(π+π− + K +K−)

This simple result says that the meson mass2 gets shifted by a
constant amount proportional to its charged squared.
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Thus, to leading order in α and the quark masses, the meson
masses are

m2
π+ = Λ̃(mu + md ) +

α

4π
∆2

m2
K + = Λ̃(mu + ms) +

α

4π
∆2

where ∆2 ≡ 2ξ(4πf )2 is a parameter whose value we cannot
predict.
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We can manipulate the formulas to make predictions for ratios
of combinations of meson masses so that the unknown
parameters ∆ and Λ̃ drop out:

(m2
K + −m2

K 0)− (m2
π+ −m2

π0)

m2
π0

=
mu −md

mu + md

3m2
η −m2

π0

m2
π0

=
4ms

mu + md
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Plugging in the measured meson masses, these formulas can
determine the ratios of quark masses in QCD:

mu

md
' 1

2
,

md

ms
' 1

20

Lattice QCD calculation in the MS scheme gives

ms ∼ 100 MeV

which implies

md ∼ 5 MeV, mu ∼ 2.5 MeV
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Power counting

The chiral Lagrangian is an EFT of QCD.

It consists of all local operators consistent with the symmetries
of QCD, and there exists a power counting scheme that allows
one to work to a given order, and to be able to make a reliable
estimate of the errors arising from neglecting the subsequent
orders.

Beyond the leading term L0 = f 2

4 tr
[
(∂Σ†)(∂Σ)

]
, one can write

down an infinite number of chirally invariant operators which are
higher powers in derivatives, as well as operators with more
insertions of the quark mass matrix M.

The derivative expansion is in power of ∂/Λ, where
Λ ∼ O(1 GeV) is the “chiral symmetry breaking scale”.
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Since the meson octet masses scale as

m2
π ∼ Λ̃M

with quark mass M, and since for on-shell pions p2 ∼ m2
π, it

follows that one insertion of quark mass matrix is equivalent to
two derivatives in the power counting.

That is, the chiral Lagrangian is a function of ∂/Λ and Λ̃M/Λ2.

This power counting is consistent with the leading operator
which can be written as

That is, the chiral Lagrangian has a prefactor of Λ2f 2 and
derivatives enter as ∂/Λ even in the leading operator.
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Including electromagnetism is simply achieved by replacing the
derivative ∂Σ by the covariant derivative

DµΣ = ∂µΣ− ieAµ[Q,Σ]

Thus, the covariant derivative should come with a 1/Lambda
factor, and the photon field enters as eAµ/Λ.

Operators arising from electromagnetic loops involve two
insertions of the quark charge matrix Q in a proper way, along
with a loop factor α/(4π).

Therefore, the chiral Lagrangian takes the form

where L̂ is a dimensionless sum of all local, chirally invariant
operators (treating M and Q as spurions).
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The coefficient of each term (except L0) is preceded by a
dimensionless coefficient to be fit to experiments which we
expect to be O(1).

This assumption allows one to estimate the size of higher order
corrections.
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Subleading order: O(p4) chiral Lagrangian

It is straightforward to write down the subleading operators of
the chiral Lagrangian.

The operators of O(p4), O(p2M) and O(M2) are given by

where χ ≡ 2Λ̃M with Λ̃ entered in LM = f 2

2 Λ̃ tr(MΣ + h.c.).

Additional operators involving Fµν need to be considered when
including electromagnetism.
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Loop effects and naive dimension analysis

How big are radiative corrections in the chiral Lagrangian?

Let us rescale the terms in the action
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From

exp
(

i
~

S
)

= exp
(

i
~

f 2

Λ2

∫
d4x̂L̂

)
= exp

[
i

(~Λ2/f 2)

∫
d4x̂L̂

]
we see that ~ is multiplied by Λ2/f 2 in this theory.

Since we get a power of ~ with each loop, a one-loop diagram
in the chiral theory will be proportional to

Λ2

(4πf )2

where we have included the standard 1/(16π2) factor from a
loop.
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This factor Λ2/(4πf )2 controls the size of quantum corrections
to operator coefficients in the theory.

If we expect perturbative control of the theory to break down
completely for momenta at the cutoff Λ, then we would expect

Λ ∼ 4πf

Estimating the size of operator coefficients in the chiral
Lagrangian by this relation is called “naive dimensional
analysis”.
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Calculation of the ratio 〈ūu〉/〈s̄s〉 at one loop

As a simple example of a one-loop calculation, consider the
computation of the ratio of the quark condensates:

x =
〈0|ūu|0〉
〈0|s̄s|0〉

The QCD Hamiltonian density is given by

H ⊃ q̄Mq =
∑

i

mi q̄iqi

so it follows from the Feynman-Hellman theorem that

〈0|q̄iqi |0〉 =
∂

∂mi
〈0|H|0〉 =

∂E0

∂mi

where E0 is the vacuum energy density.
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We do not know what E0 is, but we do know its dependence on
the quark mass matrix.

From

LM =
f 2

2
Λ̃ tr(MΣ + h.c.) =

f 2

2
Λ̃ tr[M(Σ + Σ†)]

it follows that

E0 ⊃
[
− f 2

2
Λ̃ tr[M(Σ + Σ†)] +O(M2 ln M)

]
Σij =δij

= −f 2Λ̃ tr(M) +O(M2 ln M)

= −f 2Λ̃(mu + md + ms) +O(M2 ln M)

⇒ 〈0|q̄iqi |0〉 =
∂E0

∂mi
= −f 2Λ̃ (at leading order)

⇒ x = 1 (at leading order)
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To get the subleading logarithmic corrections, we need to
compute the O(m2 ln m2) one-loop correction to the vacuum
energy.

The vacuum energy density from a real, noninteracting scalar is

E0 ⊃
1
2

∫
d4kE

(2π)4 ln(k2
E + m2)

where we have rotated the momentum to the Euclidean space.

Taking d ≡ 4− 2ε, this integral becomes

µ4−d

2

∫
ddkE

(2π)d ln(k2
E + m2)

where the prefactor of µ4−d was included to keep its mass
dimension to equal 4.
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Proof for E0 ≡ Veff ⊃ 1
2

∫ d4kE
(2π)4 ln(k2

E + m2) from a real, free
scalar degree of freedom:
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This is called the Coleman-Weinberg potential.
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Differentiating this integral with respect to the quark mass mi ,
we obtain the 1-loop correction to the quark condensate
〈0|q̄iqi |0〉(1-loop):

〈0|q̄iqi |0〉(1-loop) =
∂E(1-loop)

0
∂mi

=
∂

∂mi

∑
a=π,K ,η

µ4−d

2

∫
ddkE

(2π)d ln(k2
E + m2

a)

=
∑

a

µ4−d

2

∫
ddkE

(2π)d
∂m2

a
∂mi

∂

∂m2
a

ln(k2
E + m2

a)

=
∑

a

∂m2
a

∂mi

µ4−d

2

∫
ddkE

(2π)d
1

k2
E + m2

a

MS−−→
∑

a

∂m2
a

∂mi
· m2

a
32π2 ln

(
m2

a
µ2

)
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Proof for 〈0|q̄iqi |0〉(1-loop) MS−−→
∑

a

∂m2
a

∂mi
· m2

a
32π2 ln

(
m2

a
µ2

)
:
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The quark condensate is

〈0|q̄iqi |0〉 = 〈0|q̄iqi |0〉(leading order) + 〈0|q̄iqi |0〉(1-loop)

= −f 2Λ̃ +
∑

a

∂m2
a

∂mi
· m2

a
32π2 ln

(
m2

a
µ2

)

= −f 2Λ̃

[
1−

∑
a

∂m2
a

∂mi
· m2

a

32π2f 2Λ̃
ln
(

m2
a

µ2

)]

Thus, the quark condensate ratios are given by

〈0|q̄iqi |0〉
〈0|q̄jqj |0〉

= 1− 1
32π2f 2Λ̃

∑
a

(
∂m2

a
∂mi

− ∂m2
a

∂mj

)
m2

a ln
(

m2
a

µ2

)
+O

(
1
f 4

)
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Using the meson masses and ignoring π0–η mixing and
electromagnetic contributions, we find

x ≡ 〈0|ūu|0〉
〈0|s̄s|0〉

= 1− 3gπ + 2gK 0 + gη +O
(

1
f 4

)
where

gP ≡
1

32π2f 2 m2
P ln

(
m2

P
µ2

)
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Real and complex scalar degrees of freedom:

92 / 96



93 / 96



The ratio x ≡ 〈0|ūu|0〉
〈0|s̄s|0〉

' 1− 3gπ + 2gK 0 + gη with

gP ≡
1

32π2f 2 m2
P ln

(
m2

P
µ2

)
is µ dependent.

We can take µ = Λ = 1 GeV and assume the contributions from
the O(p4) Lagrangian are small compared to the chiral logs we
have included.

Plugging in numbers we find

gπ ' −0.028, gK 0 ' −0.13, gη ' −0.13

⇒ x ' 0.70

which is a 30% correction from the leading order result x = 1.
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Summary and Outlook

♣ Chiral Lagrangian is a useful tool to describe the physics of
Goldstone or Pseudo-Goldstone bosons, for example QCD
pions.

♣ Chiral Lagrangian can be used to discuss some BSM
theories, such as Composite Higgs and Technicolor theories.

♣ Other applications include: BEC of pions in neutron stars;
dense superconducting quark matter, etc.

Main reference:
David B. Kaplan, Lecture on effective field theory (2016)
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